# Example 1: With provided IV correlation matrix
set.seed(123)
iv_corr <- matrix(c(1.0, 0.3, 0.3, 1.0), nrow = 2)
result1 <- makeScalesRegression(
n = 64,
beta_std = c(0.4, 0.3),
r_squared = 0.35,
iv_cormatrix = iv_corr,
iv_means = c(3.0, 3.5),
iv_sds = c(1.0, 0.9),
dv_mean = 3.8,
dv_sd = 1.1,
lowerbound_iv = 1,
upperbound_iv = 5,
lowerbound_dv = 1,
upperbound_dv = 5,
items_iv = 4,
items_dv = 4,
var_names = c("Attitude", "Intention", "Behaviour")
)
print(result1)
head(result1$data)
# Example 2: With optimisation (no IV correlation matrix)
set.seed(456)
result2 <- makeScalesRegression(
n = 128,
beta_std = c(0.3, 0.25, 0.2),
r_squared = 0.40,
iv_cormatrix = NULL, # Will be optimised
iv_cor_mean = 0.3,
iv_cor_variance = 0.02,
iv_means = c(3.0, 3.2, 2.8),
iv_sds = c(1.0, 0.9, 1.1),
dv_mean = 3.5,
dv_sd = 1.0,
lowerbound_iv = 1,
upperbound_iv = 5,
lowerbound_dv = 1,
upperbound_dv = 5,
items_iv = 4,
items_dv = 5
)
# View optimised correlation matrix
print(result2$target_stats$iv_cormatrix)
print(result2$optimisation_info)
Run the code above in your browser using DataLab