Learn R Programming

LinearDetect (version 0.1.5)

Change Point Detection in High-Dimensional Linear Regression Models

Description

A unified framework for simultaneous structural break detection and parameter estimation in high-dimensional linear models. The proposed method can handle a wide range of models, including change-in-mean model, multiple linear regression model, Vector auto-regressive model and Gaussian graphical model.

Copy Link

Version

Install

install.packages('LinearDetect')

Monthly Downloads

66

Version

0.1.5

License

GPL-2

Maintainer

Yue Bai

Last Published

March 22nd, 2021

Functions in LinearDetect (0.1.5)

BIC.threshold

BIC threshold for final parameter estimation
lm.first.step.blocks

Threshold block fused lasso step for linear regression model.
ggm.sim.break

Generate the gaussian graphical model data with break points
ggm.first.step.blocks

Threshold block fused lasso step for gaussian graphical model.
ggm.second.step.search

Exhaustive search step for gaussian graphical model.
lm.second.step.search

Exhaustive search step for linear regression model.
lambda_warm_up_lm

lambda warm up for linear regression model
BIC

BIC and HBIC function
BIC.threshold.ggm

BIC threshold for final parameter estimation (GGM)
remove.extra.pts

helper function for detection check
lm.sim.break

Generate the linear regression model data with break points
soft_full

soft threshold function
pred.var

Prediction function for VAR 2
pred.block.var

Prediction function for VAR (block)
constant.sim.break

Generate the constant model data with break points
mspe.plot

Plot the cross-validation score
var.first.step.blocks

Threshold block fused lasso step for linear regression model.
var.sim.break

Generating non-stationary ARMA data.
var.second.step.search

Exhaustive search step
tbfl

Threshold block fused lasso (TBFL) algorithm for change point detection
pred

prediction function
pred.block

Prediction function (block)