Learn R Programming

⚠️There's a newer version (1.6-12) of this package.Take me there.

LogConcDEAD (version 1.5-4)

Log-concave Density Estimation in Arbitrary Dimensions

Description

Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions.

Copy Link

Version

Install

install.packages('LogConcDEAD')

Monthly Downloads

247

Version

1.5-4

License

LGPL

Maintainer

Yining Chen

Last Published

June 4th, 2011

Functions in LogConcDEAD (1.5-4)

LogConcDEAD-internal

Internal log-concave maximum likelihood estimation functions
interactive2D

A GUI for classification in two dimensions using smoothed log-concave
mlelcd

Compute the maximum likelihood estimator of a log-concave density
dmarglcd

Evaluate the marginal of multivariate log-concave maximum likelihood estimators at a point
rslcd

Sample from a smoothed log-concave maximum likelihood estimate
dslcd

Evaluation of a smoothed log-concave maximum likelihood estimator at given points
cov.LogConcDEAD

Compute the covariance matrix of a log-concave maximum likelihood estimator
dlcd

Evaluation of a log-concave maximum likelihood estimator at a point
rlcd

Sample from a log-concave maximum likelihood estimate
hatA

Compute the smoothing matrix of the smoothed log-concave maximum likelihood estimator
print.LogConcDEAD

Summarizing log-concave maximum likelihood estimator
getinfolcd

Construct an object of class LogConcDEAD
plot.LogConcDEAD

Plot a log-concave maximum likelihood estimator
LogConcDEAD-package

Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions
EMmixlcd

Estimate the mixture proportions and component densities using EM algorithm
interplcd

Evaluate the log-concave maximum likelihood estimator of 2-d data on a grid for plotting
getweights

Find appropriate weights for likelihood calculations
interpmarglcd

Finds marginals of multivariate logconcave maximum likelihood estimators by integrating