Learn R Programming

⚠️There's a newer version (1.6-12) of this package.Take me there.

LogConcDEAD (version 1.5-8)

Log-concave Density Estimation in Arbitrary Dimensions

Description

Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions.

Copy Link

Version

Install

install.packages('LogConcDEAD')

Monthly Downloads

247

Version

1.5-8

License

GPL (>= 2)

Maintainer

Yining Chen

Last Published

November 27th, 2013

Functions in LogConcDEAD (1.5-8)

LogConcDEAD-internal

Internal log-concave maximum likelihood estimation functions
mlelcd

Compute the maximum likelihood estimator of a log-concave density
rslcd

Sample from a smoothed log-concave maximum likelihood estimate
LogConcDEAD-package

Computes a log-concave (maximum likelihood) estimator for i.i.d. data in any number of dimensions
getweights

Find appropriate weights for likelihood calculations
EMmixlcd

Estimate the mixture proportions and component densities using EM algorithm
rlcd

Sample from a log-concave maximum likelihood estimate
getinfolcd

Construct an object of class LogConcDEAD
interplcd

Evaluate the log-concave maximum likelihood estimator of 2-d data on a grid for plotting
dslcd

Evaluation of a smoothed log-concave maximum likelihood estimator at given points
dmarglcd

Evaluate the marginal of multivariate log-concave maximum likelihood estimators at a point
interpmarglcd

Finds marginals of multivariate logconcave maximum likelihood estimators by integrating
interactive2D

A GUI for classification in two dimensions using smoothed log-concave
cov.LogConcDEAD

Compute the covariance matrix of a log-concave maximum likelihood estimator
print.LogConcDEAD

Summarizing log-concave maximum likelihood estimator
plot.LogConcDEAD

Plot a log-concave maximum likelihood estimator
hatA

Compute the smoothing matrix of the smoothed log-concave maximum likelihood estimator
dlcd

Evaluation of a log-concave maximum likelihood estimator at a point