This function takes two logistic regression models \(M_A, M_B\), test data, significance level \(\alpha\) and acceptable score degradation \(\delta_B\). It checks whether the models perform equivalently on the test set and returns various figures.
performance_equiv(
model_a,
model_b,
test_data,
dv_index,
delta_B = 1.1,
alpha = 0.05
)logistic regression model \(M_A\)
logistic regression model \(M_B\)
testing dataset
column number of the dependent variable
acceptable score degradation (defaults to 1.1)
significance level \(\alpha\) (defaults to 0.05)
equivalenceAre models \(M_A,M_B\) producing equivalent Brier scores for the given test data? (boolean)
brier_score_ac\(M_A\) Brier score on the testing data
brier_score_bc\(M_B\) Brier score on the testing data
diff_sd_lSD of the lower Brier difference \(BS^A-\delta_B^2BS^B\)
diff_sd_uSD of the upper Brier difference \(BS^A-\delta_B^{-2}BS^B\)
test_stat_l\(t_L\) equivalence boundary for the test
test_stat_u\(t_U\) equivalence boundary for the test
crit_vala level-\(\alpha\) critical value for the test
delta_BCalculated equivalence parameter
p_value_lP-value for \(t_L\)
p_value_uP-value for \(t_U\)