### Here shows different types of experimental design ###
data("cotton", package = "agricolae")
### Two randomly designed groups ###
sig_results <- auto_signif_test(
  data = cotton,
  treatment_col = 1,
  value_col = 5
)
### Two paired design groups ###
sig_results <- auto_signif_test(
  data = cotton,
  treatment_col = 1,
  value_col = 5,
  paired = TRUE,
  subject_col = 2
)
### More than two randomly designed groups ###
sig_results <- auto_signif_test(
  data = cotton,
  treatment_col = 2,
  value_col = 5
)
head(sig_results)  # Check outputs
### Conduct prior comparisons ###
sig_results <- auto_signif_test(
  data = cotton,
  treatment_col = 2,
  value_col = 5,
  prior = TRUE
)
head(sig_results)  # Check outputs
print(sig_results$basicdata)  # Check statistical summary
print(sig_results$anova_model)  # Extract ANOVA model
print(sig_results$anova_summary)  # Check ANOVA summary
print(sig_results$multiple_comparison_model)  # Extract multiple comparison model
print(sig_results$comparison_results)  # Check between-group comparison
print(sig_results$comparison_letters)  # Check letters (can be used in visualization)
## Change multiple comparison method (maybe not illegal!!)
sig_results <- auto_signif_test(
  data = cotton,
  treatment_col = 2,
  value_col = 5,
  prior = TRUE,
  comparison_method = "LSD"
)
head(sig_results)  # Check outputs
print(sig_results$comparison_letters)  # Note that letters become different
Run the code above in your browser using DataLab