### Here shows different types of experimental design ###
data("cotton", package = "agricolae")
### Two randomly designed groups ###
sig_results <- auto_signif_test(
data = cotton,
treatment_col = 1,
value_col = 5
)
### Two paired design groups ###
sig_results <- auto_signif_test(
data = cotton,
treatment_col = 1,
value_col = 5,
paired = TRUE,
subject_col = 2
)
### More than two randomly designed groups ###
sig_results <- auto_signif_test(
data = cotton,
treatment_col = 2,
value_col = 5
)
head(sig_results) # Check outputs
### Conduct prior comparisons ###
sig_results <- auto_signif_test(
data = cotton,
treatment_col = 2,
value_col = 5,
prior = TRUE
)
head(sig_results) # Check outputs
print(sig_results$basicdata) # Check statistical summary
print(sig_results$anova_model) # Extract ANOVA model
print(sig_results$anova_summary) # Check ANOVA summary
print(sig_results$multiple_comparison_model) # Extract multiple comparison model
print(sig_results$comparison_results) # Check between-group comparison
print(sig_results$comparison_letters) # Check letters (can be used in visualization)
## Change multiple comparison method (maybe not illegal!!)
sig_results <- auto_signif_test(
data = cotton,
treatment_col = 2,
value_col = 5,
prior = TRUE,
comparison_method = "LSD"
)
head(sig_results) # Check outputs
print(sig_results$comparison_letters) # Note that letters become different
Run the code above in your browser using DataLab