# \donttest{
{
# Data preparation
data("Two_group")
set.seed(999)
# Analysis
network_results <- network_analysis(
taxobj = Two_group,
taxlevel = "Genus",
n = 10,
threshold = 0.8
)
indicator_results <- indicator_analysis(
taxobj = Two_group,
taxlevel = "Genus"
)
deseq_results <- Deseq_analysis(
taxobj = Two_group,
taxlevel = "Genus",
cutoff = 1,
control_name = "Control"
)
# Visualize
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = indicator_results
)
# Check contained tags for each model
print(network_diff_obj$tag_statistics$sum_of_tags)
# Check contained different tags for each model
print(network_diff_obj$tag_statistics$detailed_tags)
# Re-visualize
network_visual_re(
network_visual_obj = network_diff_obj,
module_paint = TRUE,
module_num = c(1, 4)
) # Show module with most Treatment indicators
my_module_palette <- color_scheme(
c("#83BA9E", "#F49128"),
5
)
network_visual_re(
network_visual_obj = network_diff_obj,
module_paint = TRUE,
module_num = c(1, 4, 6, 3, 8),
module_palette = my_module_palette
) # Show module with most Treatment indicators
# Available also for DESeq analysis results
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = deseq_results
)
# Parameter adjustment
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = indicator_results,
tag_threshold = 20
) # The 'tag_threshold' set too high
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = indicator_results,
tag_threshold = 10
) # Set lower
# Check contained tags for each model
print(network_diff_obj$tag_statistics$sum_of_tags)
# Check contained different tags for each model
print(network_diff_obj$tag_statistics$detailed_tags)
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = indicator_results,
tag_threshold = 1
) # Set too low
# Another example
data("Three_group")
network_results <- network_analysis(
taxobj = Three_group,
taxlevel = "Genus",
n = 15,
threshold = 0.9
)
indicator_results <- indicator_analysis(
taxobj = Three_group,
taxlevel = "Genus"
)
tag_color <- c(
"CF" = "#F8766D",
"CF_OF" = "#FFFF00",
"OF" = "#00BA38",
"OF_BF" = "#800080",
"BF" = "#619CFF",
"CF_BF" = "#00FFFF"
)
network_diff_obj <- network_withdiff(
network_obj = network_results,
diff_frame = indicator_results,
aes_col = tag_color,
tag_threshold = 10
)
# Re-visualize
print(network_diff_obj$tag_statistics$detailed_tags)
network_visual_re(
network_visual_obj = network_diff_obj,
module_paint = TRUE,
module_num = c(8, 10, 11)
) # Show module with most BF indicators
network_visual_re(
network_visual_obj = network_diff_obj,
module_paint = TRUE,
module_num = c(1, 6, 8)
) # Show module with most BF and OF_BF indicators
}
# }
Run the code above in your browser using DataLab