# \donttest{
## View current global analysis options
getOption("LorMe")
## Set analysis options
LorMe_options(
global = list(Analysis_level = "Genus"),
sub_net = list(threshold = 0.7),
all_net = list(threshold = 0.7)
)
## Run pipeline (time-consuming)
Two_group_analysis <- LorMe_pipeline(Two_group)
## Access results:
# Alpha diversity
Two_group_analysis$alpha_results$plotlist$Plotobj_Shannon$Boxplot
# Beta diversity
Two_group_analysis$beta_results$PCoA_Plot
# Community composition
Two_group_analysis$composition_results$barplot
# Differential analysis
Two_group_analysis$Deseq_volcano$FC_FDR
Two_group_analysis$Deseq_manhattan$manhattan
# Differential barplot
library(patchwork)
Two_group_analysis$diffbar_result$Barplot |
Two_group_analysis$diffbar_result$Differenceplot
# Subnetworks
require(magrittr)
Two_group_analysis$sub_network_results$Treatment_sub_network %>%
network_visual()
# Combined network
Two_group_analysis$combine_network_results %>% network_visual()
## Reset to default options
LorMe_defaults()
## Example: three-group comparison with custom options
LorMe_options(
global = list(
Analysis_level = "Species",
compare_list = c("CF_OF", "CF_BF")
),
all_net = list(threshold = 0.95, method = "pearson")
)
Three_group_analysis <- LorMe_pipeline(Three_group)
# }
Run the code above in your browser using DataLab