
CW2pPMi(values, P)
data.frame
(required): measured curve data of type stimulation time (t)
(values[,1]
) and measured counts (cts) (values[,2]
)vector
(optional): stimulation period in seconds, if no value is given, the optimal value is estimated automatically (see details). Greater values of P produce more points in the
rising tail of the curve.data.frame
with three columns:
$x : time $y.t : transformed count values $x.t : transformed time values $method : used method for the production of the new data points }
data.frame
consists of two columns: time (t) and count values (CW(t))Nomenclature
P = stimulation time (s) 1/P = stimulation rate (1/s)
Internal transformation steps
(1) log(CW-OSL) values
(2) Calculate t' which is the transformed time:
(3) Interpolate CW(t'), i.e. use the log(CW(t)) to obtain the count values for the transformed time (t').
Values beyond min(t)
and max(t)
produce NA
values.
(4) Select all values for t' < min(t)
, i.e. values beyond the time resolution of t.
Select the first two values of the transformed data set which contain no NA
values and use
these values for a linear fit using lm
.
(5) Extrapolate values for t' < min(t)
based on the previously obtained fit parameters.
The extrapolation is limited to two values. Other values at the beginning of the transformed curve
are set to 0.
(6) Transform values using
(7) Combine all values and truncate all values for t' > max(t)
The number of values for t' < min(t)
depends on the stimulation period
P
. To avoid the production of too many artificial data at the raising tail of the determined pPM curve, it is recommended to use the automatic estimation routine for P
, i.e. provide no value for P
.
Further
Bulur, E., 1996. An Alternative Technique For Optically Stimulated Luminescence (OSL) Experiment. Radiation Measurements, 26, 701-709.
Bulur, E., 2000. A simple transformation for converting CW-OSL curves to LM-OSL curves. Radiation Measurements, 32, 141-145.
CW2pLM
, CW2pLMi
, CW2pHMi
, fit_LMCurve
##(1)
##load CW-OSL curve data
data(ExampleData.CW_OSL_Curve)
##transform values
values.transformed<-CW2pPMi(ExampleData.CW_OSL_Curve)
##plot
plot(values.transformed$x,values.transformed$y.t, log = "x")
##(2) - produce Fig. 4 from Bos & Wallinga (2012)
##load data
data(ExampleData.CW_OSL_Curve)
values<-CW_Curve.BosWallinga2012
##open plot area
plot(NA, NA,
xlim=c(0.001,10),
ylim=c(0,8000),
ylab="pseudo OSL (cts/0.01 s)",
xlab="t [s]",
log="x",
main="Fig. 4 - Bos & Wallinga (2012)",
)
values.t<-CW2pLMi(values, P=1/20)
lines(values[1:length(values.t[,1]),1],CW2pLMi(values, P=1/20)[,2], col="red" ,lwd=1.3)
text(0.03,4500,"LM", col="red" ,cex=.8)
values.t<-CW2pHMi(values, delta=40)
lines(values[1:length(values.t[,1]),1],CW2pHMi(values, delta=40)[,2], col="black", lwd=1.3)
text(0.005,3000,"HM", cex=.8)
values.t<-CW2pPMi(values, P=1/10)
lines(values[1:length(values.t[,1]),1],CW2pPMi(values, P=1/10)[,2], col="blue", lwd=1.3)
text(0.5,6500,"PM", col="blue" ,cex=.8)
Run the code above in your browser using DataLab