BaseDataSet.CosmicDoseRate
$$Dc = D0*(F+J*exp((altitude/1000)/H))$$
calc_CosmicDoseRate
.values.cosmic.Softcomp
Program: "AGE" Reference: Gruen (2009) Fit: Polynomials in the form of
}
$$y = 2*10^-6*x^2-0.0008*x+0.2535 (for depths between 40-167 g cm^-2)$$
$$y = 2*10^-6*x^2-0.0008*x+0.2535 (For depths <40 g="" cm^-2)$$="" <="" p="">
values.factor.Altitude
Reference: Prescott & Hutton (1994) Page: 499 Figure: 1 Fit: 2-degree polynomial in the form of
}
$$y = -0.026*x^2 + 0.6628*x + 1.0435$$
values.par.FJH
Reference: Prescott & Hutton (1994) Page: 500 Figure: 2 Fits: 3-degree polynomials and linear fits
}
F (non-linear part, $\lambda$ < 36.5 deg.):
$$y = -7*10^-7*x^3-8*10^-5*x^2-0.0009*x+0.3988$$
F (linear part, $\lambda$ > 36.5 deg.):
$$y = -0.0001*x + 0.2347$$
J (non-linear part, $\lambda$ < 34 deg.):
$$y = 5*10^-6*x^3-5*10^-5*x^2+0.0026*x+0.5177$$
J (linear part, $\lambda$ > 34 deg.):
$$y = 0.0005*x + 0.7388$$
H (non-linear part, $\lambda$ < 36 deg.):
$$y = -3*10^-6*x^3-5*10^-5*x^2-0.0031*x+4.398$$
H (linear part, $\lambda$ > 36 deg.):
$$y = 0.0002*x + 4.0914$$
40>Prescott, J.R., Hutton, J.T., 1988. Cosmic ray and gamma ray dosimetry for TL and ESR. Nuclear Tracks and Radiation Measurements, 14, pp. 223-227.
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23, pp. 497-500.
##load data
data(BaseDataSet.CosmicDoseRate)
Run the code above in your browser using DataLab