Learn R Programming

Luminescence (version 0.3.1)

calc_CentralDose: Apply the central age model (CAM) after Galbraith et al. (1999) to a given De distribution

Description

This function calculates the central dose and dispersion of the De distribution, their standard errors and the profile log likelihood function for sigma.

Usage

calc_CentralDose(input.data, sigmab = 0, sample.id = "unknown sample", 
    print.iterations = FALSE, output.plot = TRUE)

Arguments

input.data
RLum.Results or data.frame (required): for data.frame: two columns with De (input.data[,1]) and De error (values[,2])
sigmab
numeric (with default): spread in De values given as a fraction (e.g. 0.2). This value represents the expected overdispersion in the data should the sample be well-bleached (Cunningham & Walling 2012, p
sample.id
character (with default): sample id
print.iterations
logical (with default): terminal output of calculation iterations
output.plot
logical (with default): plot output

Value

  • Returns a plot (optional) and terminal output. In addition an RLum.Results object is returned containing the following element:
  • resultsdata.frame with statistical parameters.
  • The output should be accessed using the function get_RLum.Results

Details

This function uses the equations of Galbraith et al. (1999, pp. 358-359). The parameter sigma is estimated using the maximum likelihood approach. A detailed explanation on maximum likelihood estimation can be found in the appendix of Galbraith & Laslett (1993, pp. 468-470)

References

Galbraith, R.F. & Laslett, G.M., 1993. Statistical models for mixed fission track ages. Nuclear Tracks Radiation Measurements, 4, pp. 459-470. Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41, pp. 339-364. Galbraith, R.F. & Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology, 11, pp. 1-27. Further reading Arnold, L.J. & Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology, 4, pp. 204-230. Bailey, R.M. & Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews, 25, pp. 2475-2502. Cunningham, A.C. & Wallinga, J., 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology, 12, pp. 98-106. Rodnight, H., Duller, G.A.T., Wintle, A.G. & Tooth, S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology, 1, pp. 109-120. Rodnight, H., 2008. How many equivalent dose values are needed to obtain a reproducible distribution?. Ancient TL, 26, pp. 3-10.

See Also

plot, calc_CommonDose, calc_FiniteMixture, calc_FuchsLang2001, calc_MinDose3, calc_MinDose4

Examples

Run this code
##load example data
data(ExampleData.DeValues, envir = environment())

##apply the central dose model
calc_CentralDose(ExampleData.DeValues)

Run the code above in your browser using DataLab