calc_CentralDose(input.data, sigmab = 0, sample.id = "unknown sample",
print.iterations = FALSE, output.plot = TRUE)
RLum.Results
or data.frame (required):
for data.frame
: two columns with De (input.data[,1])
and
De error (values[,2])
numeric
(with default): spread in De values given as
a fraction (e.g. 0.2). This value represents the expected overdispersion
in the data should the sample be well-bleached (Cunningham & Walling 2012,
pcharacter
(with default): sample idlogical
(with default): terminal output of
calculation iterationslogical
(with default): plot outputRLum.Results
object is
returned containing the following element:get_RLum.Results
sigma
is estimated using the maximum likelihood
approach. A detailed explanation on maximum likelihood estimation can be
found in the appendix of Galbraith & Laslett (1993, pp. 468-470)plot
, calc_CommonDose
,
calc_FiniteMixture
, calc_FuchsLang2001
,
calc_MinDose3
, calc_MinDose4
##load example data
data(ExampleData.DeValues, envir = environment())
##apply the central dose model
calc_CentralDose(ExampleData.DeValues)
Run the code above in your browser using DataLab