calc_FiniteMixture(input.data, sigmab, n.components, sample.id = "unknown sample",
n.iterations = 200, grain.probability = FALSE, output.file = FALSE,
output.filename = "default")
RLum.Results
or data.frame (required):
for data.frame
: two columns with De (input.data[,1])
and
De error (values[,2])
numeric
(required): spread in De values given as a
fraction (e.g. 0.2). This value represents the expected overdispersion in
the data should the sample be well-bleached (Cunningham & Walling 2012,numeric
(required): number of components to be
fittedcharacter
(with default): sample idnumeric
(with default): number of iterations for maximum
likelihood estimateslogical
(with default): prints the estimated probabilities
of which component each grain is inlogical
(with default): save results to file. See
output.filename
.character
(with default): desired filename, else results
are saved to default.resget_RLum.Results
calc_CentralDose
,
calc_CommonDose
, calc_FuchsLang2001
,
calc_MinDose3
, calc_MinDose4
## load example data
data(ExampleData.DeValues, envir = environment())
## apply the finite mixture model
calc_FiniteMixture(ExampleData.DeValues,
sigmab = 0.08, n.components = 2,
grain.probability = TRUE, output.file = FALSE)
Run the code above in your browser using DataLab