nls
function with the port
algorithm.fit_CWCurve(values, n.components.max, fit.failure_threshold = 3,
fit.trace = FALSE, fit.calcError = FALSE, LED.power = 36,
LED.wavelength = 470, log = "", cex.global = 0.6, main = "CW-OSL Curve Fit",
sample_code = "Default", ylab, xlab, output.path, output.terminal = TRUE,
output.terminalAdvanced = TRUE, output.plot = TRUE)
RLum.Data.Curve
or data.frame
(required): x, y data of measured values (time and counts). See examples.output.terminal = TRUE
.
If output.terminal = FALSE
no advanced output is possible.output.path
is set.RLum.Results
objectRLum.Results
object is returned.
fit
: an nls
object ($fit
) for which generic R functions
are provided, e.g. summary, confint, profile.
For more details, see nls.
output.table
: a data.frame containing the summarized
parameters including the error
component.contribution.matrix
: matrix containing the values
for the component to sum contribution plot
($component.contribution.matrix
).confint
. Due to considerable calculation time, this option is
deactived by default. In addition, the error for the components can be
estimated by using internal R functions like summary
.
See the nls
help page for more information.
For details on the nonlinear regression in R, see Ritz & Streibig (2008).fit_LMCurve
, plot
,nls
,
RLum.Data.Curve
, RLum.Results
,
get_RLum.Results
##load data
data(ExampleData.CW_OSL_Curve, envir = environment())
##fit data
fit <- fit_CWCurve(values = ExampleData.CW_OSL_Curve,
main = "CW Curve Fit",
n.components.max = 4,
log = "x")
Run the code above in your browser using DataLab