Learn R Programming

Luminescence (version 0.3.1)

plot_DRTResults: Visualise dose recovery test results

Description

The function provides a standardised plot output for dose recovery test measurements.

Usage

plot_DRTResults(values, given.dose, error.range = 10, preheat, 
    boxplot = FALSE, mtext, summary, summary.pos, legend, legend.pos, 
    na.exclude = FALSE, ...)

Arguments

values
RLum.Results or data.frame, (required): input values containing at least De and De error. To plot more than one data set in one figure, a list
given.dose
numeric: given dose from the dose recovery test (in Seconds or Gray, unit has to be the same as from the input values).
error.range
numeric: symmetric error range in percent will be shown as dashed lines in the plot. Set error.range to 0 to void plotting of error ranges.
preheat
numeric: optional vector of preheat temperatures to be used for grouping the De values. If specified, the temperatures are assigned to the x-axis.
boxplot
logical: optionally plot values, that are grouped by preheat temperature as boxplots. Only possible when preheat vector is specified.
mtext
character: additional text below the plot title.
summary
character (optional): adds numerical output to the plot. Can be one or more out of: "n" (number of samples), "mean" (mean De value), "mean.weighted" (error-weigh
summary.pos
numeric or character (with default): optional position coordinates or keyword (e.g. "topright") for the statistical summary. Alternativel
legend
character vector (optional): legend content to be added to the plot.
legend.pos
numeric or character (with default): optional position coordinates or keyword (e.g. "topright") for the legend to be plotted.
na.exclude
logical: indicating wether NA values are removed before plotting from the input data set
...
further arguments and graphical parameters passed to plot.

Value

  • A plot is returned.

Function version

0.1.2 (2014-04-13 14:30:15)

Details

Procedure to test the accuracy of a measurement protocol to reliably determine the dose of a specific sample. Here, the natural signal is erased and a known laboratory dose administered which is treated as unknown. Then the De measurement is carried out and the degree of congruence between administered and recovered dose is a measure of the protocol's accuracy for this sample. In the plot the normalised De is shown on the y-axis, i.e. obtained De/Given Dose.

References

Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41, 369-391.

See Also

plot

Examples

Run this code
## read example data set and misapply them for this plot type
data(ExampleData.DeValues, envir = environment())

## plot values 
plot_DRTResults(values = ExampleData.DeValues[7:11,], 
given.dose = 2800, mtext = "Example data")

## plot values with legend
plot_DRTResults(values = ExampleData.DeValues[7:11,], 
                given.dose = 2800,
                legend = "Test data set")

## create and plot two subsets with randomised values
x.1 <- ExampleData.DeValues[7:11,]
x.2 <- ExampleData.DeValues[7:11,] * c(runif(5, 0.9, 1.1), 1)

plot_DRTResults(values = list(x.1, x.2),
                given.dose = 2800)

## some more user-defined plot parameters
plot_DRTResults(values = list(x.1, x.2),
                given.dose = 2800,
                pch = c(2, 5),
                col = c("orange", "blue"),
                xlim = c(0, 8),
                ylim = c(0.85, 1.15),
                xlab = "Sample aliquot")

## plot the data with user-defined statistical measures as legend
plot_DRTResults(values = list(x.1, x.2),
                given.dose = 2800,
                summary = c("n", "mean.weighted", "sd"))

## plot the data with user-defined statistical measures as sub-header
plot_DRTResults(values = list(x.1, x.2),
                given.dose = 2800,
                summary = c("n", "mean.weighted", "sd"),
                summary.pos = "sub")

## plot the data grouped by preheat temperatures
plot_DRTResults(values = ExampleData.DeValues[7:11,], 
                given.dose = 2800,
                preheat = c(200, 200, 200, 240, 240))

## plot two data sets grouped by preheat temperatures
plot_DRTResults(values = list(x.1, x.2), 
                given.dose = 2800,
                preheat = c(200, 200, 200, 240, 240))

## plot the data grouped by preheat temperatures as boxplots
plot_DRTResults(values = ExampleData.DeValues[7:11,], 
                given.dose = 2800,
                preheat = c(200, 200, 200, 240, 240),
                boxplot = TRUE)

Run the code above in your browser using DataLab