nls
function with the port
algorithm.fit_CWCurve(values, n.components.max, fit.failure_threshold = 3,
fit.trace = FALSE, fit.calcError = FALSE, LED.power = 36,
LED.wavelength = 470, cex.global = 0.6, sample_code = "Default",
output.path, output.terminal = TRUE, output.terminalAdvanced = TRUE,
output.plot = TRUE, ...)
RLum.Data.Curve
or data.frame
(required): x, y data of measured values (time and counts). See examples.output.terminal = TRUE
.
If output.terminal = FALSE
no advanced output is possible.plot
.output.path
is set.RLum.Results
objectRLum.Results
object is returned.
fit
: an nls
object ($fit
) for which generic R functions
are provided, e.g. summary, confint, profile.
For more details, see nls.
output.table
: a data.frame containing the summarised
parameters including the error
component.contribution.matrix
: matrix containing the values
for the component to sum contribution plot
($component.contribution.matrix
).
Matrix structure:
Column 1 and 2: time and rev(time)
values
Additional columns are used for the components, two for each component,
containing I0 and n0. The last columns cont.
provide information on
the relative component contribution for each time interval including the row
sum for this values.confint
. Due to considerable calculation time, this option is
deactived by default. In addition, the error for the components can be
estimated by using internal R functions like summary
.
See the nls
help page for more information.
For details on the nonlinear regression in R, see Ritz & Streibig (2008).fit_LMCurve
, plot
,nls
,
RLum.Data.Curve
, RLum.Results
,
get_RLum.Results
##load data
data(ExampleData.CW_OSL_Curve, envir = environment())
##fit data
fit <- fit_CWCurve(values = ExampleData.CW_OSL_Curve,
main = "CW Curve Fit",
n.components.max = 4,
log = "x")
Run the code above in your browser using DataLab