calc_CommonDose(data, sigmab, log = TRUE, ...)
RLum.Results
or data.frame
(required): for data.frame
: two columns with De
(data[,1])
and De error (values[,2])
numeric
(with default): additional spread in De values.
This value represents the expected overdispersion in the data should the sample be
well-bleached (Cunningham & Walling 2012, p. 100).
NOTE: For the logged model (log = TRUE
) this value must be
a fraction, e.g. 0.2 (= 20 %). If the un-logged model is used (log = FALSE
),
sigmab must be provided in the same absolute units of the De values (seconds or Gray).logical
(with default): fit the (un-)logged common
age model to De dataRLum.Results
object is returned containing the
following element:The output should be accessed using the function
get_RLum
log = TRUE
this function
calculates the weighted mean of logarithmic De values. Each of the estimates
is weighted by the inverse square of its relative standard error. The
weighted mean is then transformed back to the dose scale (Galbraith &
Roberts 2012, p. 14). The log transformation is not applicable if the
De estimates are close to zero or negative. In this case the un-logged model
can be applied instead (log = FALSE
). The weighted mean is then
calculated using the un-logged estimates of De and their absolute standard
error (Galbraith & Roberts 2012, p. 14).
calc_CentralDose
, calc_FiniteMixture
,
calc_FuchsLang2001
, calc_MinDose
## load example data
data(ExampleData.DeValues, envir = environment())
## apply the common dose model
calc_CommonDose(ExampleData.DeValues$CA1)
Run the code above in your browser using DataLab