calc_MaxDose(data, sigmab, log = TRUE, par = 3, bootstrap = FALSE, init.values, plot = TRUE, ...)
RLum.Results
or data.frame
(required): for data.frame
: two columns with De (data[
,1])
and De error (data[ ,2])
.numeric
(required): additional spread in De values.
This value represents the expected overdispersion in the data should the sample be
well-bleached (Cunningham & Walling 2012, p. 100).
NOTE: For the logged model (log = TRUE
) this value must be
a fraction, e.g. 0.2 (= 20 %). If the un-logged model is used (log = FALSE
),
sigmab must be provided in the same absolute units of the De values (seconds or Gray).
See details (calc_MinDose
.logical
(with default): fit the (un-)logged three
parameter minimum dose model to De datanumeric
(with default): apply the 3- or
4-parametric minimum age model (par=3
or par=4
).logical
(with default): apply the recycled
bootstrap approach of Cunningham & Wallinga (2012).numeric
(with default): starting values for
gamma, sigma, p0 and mu. Custom values need to be provided in a vector of
length three in the form of c(gamma, sigma, p0)
.logical
(with default): plot output
(TRUE
/FALSE
)bs.M, bs.N, bs.h,
sigmab.sd
). See details for their usage.calc_MinDose
.
When all calculations are done the results are then converted as follows 1. subtract the x-offset 2. multiply the natural logs by -1 3. take the exponent to obtain the maximum dose estimate in Gy
Further documentation
Please see calc_MinDose
.
Galbraith, R.F. & Laslett, G.M., 1993. Statistical models for mixed fission track ages. Nuclear Tracks Radiation Measurements 4, 459-470.
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H. & Olley, J.M., 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry 41, 339-364.
Galbraith, R.F., 2005. Statistics for Fission Track Analysis, Chapman & Hall/CRC, Boca Raton.
Galbraith, R.F. & Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 1-27.
Olley, J.M., Roberts, R.G., Yoshida, H., Bowler, J.M., 2006. Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia. Quaternary Science Reviews 25, 2469-2474.
Further reading
Arnold, L.J. & Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204-230.
Bailey, R.M. & Arnold, L.J., 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 2475-2502.
Cunningham, A.C. & Wallinga, J., 2012. Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology 12, 98-106.
Rodnight, H., Duller, G.A.T., Wintle, A.G. & Tooth, S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1, 109-120. Rodnight, H., 2008. How many equivalent dose values are needed to obtain a reproducible distribution?. Ancient TL 26, 3-10.
calc_CentralDose
, calc_CommonDose
,
calc_FiniteMixture
, calc_FuchsLang2001
,
calc_MinDose
## load example data
data(ExampleData.DeValues, envir = environment())
# apply the maximum dose model
calc_MaxDose(ExampleData.DeValues$CA1, sigmab = 0.2, par = 3)
Run the code above in your browser using DataLab