Learn R Programming

Luminescence (version 1.1.2)

set_RLum: General setter function for RLum-class objects

Description

The function provides a generalised access point for specific RLum objects. Depending on the given class, the corresponding method to create an object from this class will be selected.

Usage

set_RLum(class, originator, .uid = create_UID(), .pid = NA_character_, ...)

# S4 method for RLum.Analysis set_RLum( class, originator, .uid, .pid, protocol = NA_character_, records = list(), info = list() )

# S4 method for RLum.Data.Curve set_RLum( class, originator, .uid, .pid, recordType = NA_character_, curveType = NA_character_, data = matrix(0, ncol = 2), info = list() )

# S4 method for RLum.Data.Image set_RLum( class, originator, .uid, .pid, recordType = "Image", curveType = NA_character_, data = array(), info = list() )

# S4 method for RLum.Data.Spectrum set_RLum( class, originator, .uid, .pid, recordType = "Spectrum", curveType = NA_character_, data = matrix(), info = list() )

# S4 method for RLum.Results set_RLum(class, originator, .uid, .pid, data = list(), info = list())

Value

An object of the specified RLum class.

Arguments

class

character (required): name of the S4 class to create, must correspond to one of the RLum classes.

originator

character (automatic): contains the name of the calling function (the function that produces this object); can be set manually.

.uid

character (automatic): unique ID for this object, by default set using the internal C++ function create_UID.

.pid

character (with default): option to provide a parent id for nesting at will.

...

further arguments passed to the specific class method

protocol

character (optional): sets protocol type for analysis object. Value may be used by subsequent analysis functions.

records

list (optional): list of RLum.Analysis objects

info

list (optional): a list containing additional info data for the object.

recordType

character (optional): record type (e.g., "OSL")

curveType

character (optional): curve type (e.g., "predefined" or "measured")

data

matrix or list (with default): a matrix containing raw curve data or a list containing the data to be stored in the object (for RLum.Results objects) . If data itself is a RLum.Data.Curve-object this can be used to re-construct the object, i.e. modified parameters except .uid, .pid and originator. The rest will be subject to copy and paste unless provided.

Functions

  • set_RLum(RLum.Analysis): Construction method for RLum.Analysis objects.

  • set_RLum(RLum.Data.Curve): Construction method for RLum.Data.Curve objects.

  • set_RLum(RLum.Data.Image): Construction method for RLum.Data.Image objects.

  • set_RLum(RLum.Data.Spectrum): Construction method for RLum.Data.Spectrum objects.

  • set_RLum(RLum.Results): Construction method for RLum.Results objects.

Function version

0.3.0

Author

Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany) , RLum Developer Team

How to cite

Kreutzer, S., 2025. set_RLum(): General setter function for RLum-class objects. Function version 0.3.0. In: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M.C., Schmidt, C., Fischer, M., Friedrich, J., Mercier, N., Philippe, A., Riedesel, S., Autzen, M., Mittelstrass, D., Gray, H.J., Galharret, J., Colombo, M., Steinbuch, L., Boer, A.d., 2025. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package version 1.1.2. https://r-lum.github.io/Luminescence/

See Also

RLum.Data.Curve, RLum.Data.Image, RLum.Data.Spectrum, RLum.Analysis, RLum.Results

Examples

Run this code

## produce empty objects from each class
set_RLum(class = "RLum.Data.Curve")
set_RLum(class = "RLum.Data.Spectrum")
set_RLum(class = "RLum.Data.Spectrum")
set_RLum(class = "RLum.Analysis")
set_RLum(class = "RLum.Results")

## produce a curve object with arbitrary curve values
object <- set_RLum(
class = "RLum.Data.Curve",
curveType = "arbitrary",
recordType = "OSL",
data = matrix(c(1:100,exp(-c(1:100))),ncol = 2))

## plot this curve object
plot_RLum(object)

Run the code above in your browser using DataLab