A data-array of interval-valued data is an array where each of the NObs rows, corresponding to each entity under analysis, contains the observed intervals of the NIVar descriptive variables.
MidP
:A data-frame of the midpoints of the observed intervals
LogR
:A data-frame of the logarithms of the ranges of the observed intervals
ObsNames
:An optional vector of names assigned to the individual observations.
VarNames
:An optional vector of names to be assigned to the Interval-Valued Variables.
NObs
:Number of entities under analysis (cases)
NIVar
:Number of interval variables
signature(x = "IData")
: head S4 method for the IData-class.
signature(object = "IData")
: show S4 method for the IData-class.
signature(x = "IData")
: returns the number of entities (observations).
signature(x = "IData")
: returns the number of Iterval Variables.
signature(object = "IData")
: show S4 method for the IData-class.
signature(x = "IData")
: tail S4 method for the IData-class.
signature(x = "IData")
: Maximum likelihood estimation.
signature(x = "IData")
: Fast trimmed maximum likelihood estimation.
signature(x = "IData")
: Exact trimmed maximum likelihood estimation.
signature(x = "IData")
: Maximum likelihood estimation.
signature(x = "IData")
: Robust estimation of distribution mixtures for interval-valued data.
signature(x = "IData")
: MANOVA tests on the interval-valued data.
signature(x = "IData")
: Linear Discriminant Analysis using maximum likelihood parameter estimates of Gaussian mixtures.
signature(x = "IData")
: Quadratic Discriminant Analysis using maximum likelihood parameter estimates of Gaussian mixtures.
signature(x = "IData")
: Linear Discriminant Analysis using robust estimates of location and scatter.
signature(x = "IData")
: Quadratic Discriminant Analysis using robust estimates of location and scatter.
signature(x = "IData")
: Discriminant Analysis using maximum likelihood parameter estimates of SkewNormal mixtures.
Brito, P., Duarte Silva, A. P. (2012), Modelling Interval Data with Normal and Skew-Normal Distributions. Journal of Applied Statistics 39(1), 3--20.
Hadi, A. S. and Luceno, A. (1997), Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms. Computational Statistics and Data Analysis 25(3), 251--272.
Noirhomme-Fraiture, M., Brito, P. (2011), Far Beyond the Classical Data Models: Symbolic Data Analysis. Statistical Analysis and Data Mining 4(2), 157--170.
IData
, mle
, fasttle
, fulltle
, RobMxtDEst
,
MANOVA
, lda
, qda
, Roblda
, Robqda