R package for MAIVE: "Spurious Precision in Meta-Analysis of Observational Research" by Zuzana Irsova, Pedro Bom, Tomas Havranek, Petr Cala, and Heiko Rachinger.
maive(
dat,
method,
weight,
instrument,
studylevel,
SE,
AR,
first_stage = 0L,
estimate = NULL,
se = NULL,
n = NULL,
study_id = NULL,
seed = 123
)beta: MAIVE meta-estimate
SE: MAIVE standard error
F-test: heteroskedastic robust F-test of the first step instrumented SEs
beta_standard: point estimate from the method chosen
SE_standard: standard error from the method chosen
Hausman: Hausman type test: comparison between MAIVE and standard version
Chi2: 5
SE_instrumented: instrumented standard errors
AR_CI: Anderson-Rubin confidence interval for weak instruments
pub bias p-value: p-value of test for publication bias / p-hacking based on instrumented FAT
egger_coef: Egger Coefficient (PET estimate)
egger_se: Egger Standard Error (PET standard error)
egger_boot_ci: Confidence interval for the Egger coefficient using the selected resampling scheme
egger_ar_ci: Anderson-Rubin confidence interval for the Egger coefficient (when available)
is_quadratic_fit: Details on quadratic selection and slope behaviour
boot_result: Boot result
slope_coef: Slope coefficient
petpeese_selected: Which model (PET or PEESE) was selected when method=3 (NA otherwise)
peese_se2_coef: Coefficient on SE^2 when PEESE is the final model (NA otherwise)
peese_se2_se: Standard error of the PEESE SE^2 coefficient (NA otherwise)
Data frame with columns bs, sebs, Ns, study_id (optional).
1 FAT-PET, 2 PEESE, 3 PET-PEESE, 4 EK.
0 no weights, 1 standard weights, 2 MAIVE adjusted weights, 3 study weights.
1 yes, 0 no.
Correlation at study level: 0 none, 1 fixed effects, 2 cluster.
SE estimator: 0 CR0 (Huber-White), 1 CR1 (Standard empirical correction), 2 CR2 (Bias-reduced estimator), 3 wild bootstrap.
Anderson Rubin corrected CI for weak instruments (available for unweighted and MAIVE-adjusted weight versions of PET, PEESE, PET-PEESE, not available for fixed effects): 0 no, 1 yes.
First-stage specification for the variance model: 0 levels, 1 log.
Optional column name to use instead of 'bs'
Optional column name to use instead of 'sebs'
Optional column name to use instead of 'Ns'
Optional column name for study identifiers
Seed for the wild bootstrap when SE = 3. Use NULL to avoid setting a seed (results depend on the current RNG state). Default is 123 for historical reproducibility.
Guided, interactive workflow available at https://www.easymeta.org.
Data dat can be imported from an Excel file via:
dat <- read_excel("inputdata.xlsx") or from a csv file via: dat <- read.csv("inputdata.csv")
It should contain:
Estimates: bs
Standard errors: sebs
Number of observations: Ns
Optional: study_id
Default option for MAIVE: MAIVE-PET-PEESE, unweighted, instrumented, cluster SE, wild bootstrap, AR.
dat <- data.frame(
bs = c(0.5, 0.45, 0.55, 0.6),
sebs = c(0.25, 0.2, 0.22, 0.27),
Ns = c(50, 80, 65, 90)
)
result <- maive(dat,
method = 3, weight = 0, instrument = 1,
studylevel = 0, SE = 0, AR = 0, first_stage = 0
)
Run the code above in your browser using DataLab