Learn R Programming

MARX (version 0.2)

Simulation, Estimation, Model Selection and Forecasting for MARX Models

Description

Simulate, estimate (by t-MLE), select and forecast mixed causal-noncausal autoregressive models with possibly exogenous regressors, using methods proposed in Lanne and Saikkonen (2011) and Hecq et al. (2016) .

Copy Link

Version

Install

install.packages('MARX')

Monthly Downloads

16

Version

0.2

License

GPL-2

Maintainer

Sean Telg

Last Published

April 24th, 2018

Functions in MARX (0.2)

forecast.marx

Forecasting function for the MARX model
bic

The Bayesian/Schwarz information criterion (BIC) function
companion.form

Companion form function
inference

Asymptotic inference for the MARX function
commodity

Data: Monthly growth rates of commodity prices, exchange rate and industrial production index.
hq

The Hannan-Quinn (HQ) information criterion function
ll.max

The value of the t-log-likelihood for MARX function
aic

The Akaike information criterion (AIC) function
compute.MA

Coefficients of the moving average representation function
regressor.matrix

The regressor matrix function
pseudo

The pseudo-causal model function
mixed

The MARX estimation function
selection.lag.lead

The lag-lead model selection for MARX function
selection.lag

The model selection for pseudo-ARX function
arx.ls

The ARX estimation by OLS function
marx

The MARX function
marx.t

The estimation of the MARX model by t-MLE function
sim.marx

The simulation of MARX processes