# ginv

0th

Percentile

##### Generalized Inverse of a Matrix

Calculates the Moore-Penrose generalized inverse of a matrix X.

Keywords
algebra
ginv(X, tol = sqrt(.Machine$double.eps)) ##### Arguments X Matrix for which the Moore-Penrose inverse is required. tol A relative tolerance to detect zero singular values. ##### Value • A MP generalized inverse matrix for X. ##### References Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition. Springer. p.100. ##### See Also solve, svd, eigen ##### Aliases • ginv ##### Examples # The function is currently defined as function(X, tol = sqrt(.Machine$double.eps))
{
## Generalized Inverse of a Matrix
dnx <- dimnames(X)
if(is.null(dnx)) dnx <- vector("list", 2)
s <- svd(X)
nz <- s$d > tol * s$d[1]
structure(
if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s\$d[nz]) else X,
dimnames = dnx[2:1])
}
Documentation reproduced from package MASS, version 7.3-20, License: GPL-2 | GPL-3

### Community examples

Looks like there are no examples yet.