Last chance! 50% off unlimited learning
Sale ends in
stepAIC(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, use.start = FALSE,
k = 2, ...)
upper
and lower
, both formulae. See the
details for how to specify the formulae and"both"
,
"backward"
, or "forward"
, with a default of "both"
.
If the scope
argument is missing the default for
direction
is stepAIC
.
Larger values may give more information on the fitting process.AIC
statistic, and whose output is arbitrary.
Typically keep
will select a subset of the components of
the object and return them. The default glm
(and other fits), but it can also slow them
down. Not used in R.k = 2
gives the genuine AIC: k = log(n)
is
sometimes referred to as BIC or SBC.extractAIC
. (None are currently used.)"anova"
component corresponding to the
steps taken in the search, as well as a "keep"
component if the
keep=
argument was supplied in the call. The
"Resid. Dev"
column of the analysis of deviance table refers
to a constant minus twice the maximized log likelihood: it will be a
deviance only in cases where a saturated model is well-defined
(thus excluding lm
, aov
and survreg
fits,
for example).scope
argument.
The right-hand-side of its lower
component is always included
in the model, and right-hand-side of the model is included in the
upper
component. If scope
is a single formula, it
specifies the upper
component, and the lower
model is
empty. If scope
is missing, the initial model is used as the
upper
model. Models specified by scope
can be templates to update
object
as used by update.formula
.
There is a potential problem in using glm
fits with a
variable scale
, as in that case the deviance is not simply
related to the maximized log-likelihood. The glm
method for
extractAIC
makes the
appropriate adjustment for a gaussian
family, but may need to be
amended for other cases. (The binomial
and poisson
families have fixed scale
by default and do not correspond
to a particular maximum-likelihood problem for variable scale
.)
Where a conventional deviance exists (e.g. for lm
, aov
and glm
fits) this is quoted in the analysis of variance table:
it is the unscaled deviance.
addterm
, dropterm
, step
quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
quine.stp <- stepAIC(quine.nxt,
scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
trace = FALSE)
quine.stp$anova
cpus1 <- cpus
for(v in names(cpus)[2:7])
cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = TRUE)
cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.lm <- lm(log10(perf) ~ ., data = cpus1[cpus.samp,2:8])
cpus.lm2 <- stepAIC(cpus.lm, trace = FALSE)
cpus.lm2$anova
example(birthwt)
birthwt.glm <- glm(low ~ ., family = binomial, data = bwt)
birthwt.step <- stepAIC(birthwt.glm, trace = FALSE)
birthwt.step$anova
birthwt.step2 <- stepAIC(birthwt.glm, ~ .^2 + I(scale(age)^2)
+ I(scale(lwt)^2), trace = FALSE)
birthwt.step2$anova
quine.nb <- glm.nb(Days ~ .^4, data = quine)
quine.nb2 <- stepAIC(quine.nb)
quine.nb2$anova
Run the code above in your browser using DataLab