Learn R Programming

MAd (version 0.8-3)

compute_gs: Converts Vector of Standardized Mean Differences

Description

Adds g (unbiassed standardized mean difference) to a data.frame. Required inputs are: n.1 (sample size of group one), sd.1 (standard deviation of group one), n.2 (sample size of group two).

Usage

compute_gs(d , var.d , n.1, n.2, data)

Value

g

Unbiased standardized mean difference.

var.g

Variance of g.

se.g

Standard error of g.

Arguments

d

Standardized mean difference (biased).

var.d

Variance of d.

n.1

sample size of group one.

n.2

sample size of group two.

data

data.frame with standardized mean difference, variance of d, sample size of group one, sample size of group two.

Author

AC Del Re & William T. Hoyt

Maintainer: AC Del Re acdelre@gmail.com

References

Borenstein (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta analysis (pp. 279-293). New York: Russell Sage Foundation.

See Also

compute_ds, compute_dgs

Examples

Run this code

id <- c(1:20)
n.1 <- c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
n.2 <- c(11,22,10,20,25,12,12,36,19,11,34,75,33,120,37,14,40,16,10,21)
m.1 <- c(.68,.56,.23,.64,.49,.4,1.49,.53,.58,1.18,.11,1.27,.26,.40,.49,
         .51,.40,.34,.42,.66)
m.2 <- c(.38,.36,.23,.34,.29,.4,1.9,.33,.28,1.1,.111,.27,.21,.140,.149,
         .51,.140,.134,.42,.16)
sd.1 <- c(.28,.26,.23,.44,.49,.34,.39,.33,.58,.38,.31,.27,.26,.40,
          .49,.51,.140,.134,.42,.46)
sd.2 <- c(.28,.26,.23,.44,.49,.44,.39,.33,.58,.38,.51,.27,.26,.40,
          .49,.51,.140,.134,.142,.36)
mod1 <- c(1,2,3,4,1,2,8,7,5,3,9,7,5,4,3,2,3,5,7,1)
mod2 <- factor(c(rep(c(1,2,3,4),5)))
dfs <- data.frame(id, n.1,m.1, sd.1, n.2, m.2, sd.2, mod1, mod2)

# Example

# first compute d
dfs2 <- compute_ds(n.1, m.1, sd.1, n.2, m.2, sd.2, data = dfs)

# now, compute g
compute_gs(d, var.d, n.1, n.2, dfs2)

Run the code above in your browser using DataLab