ff: The Use of Marginal Distributions in Conditional Forecasting
Description
A new way to predict time series using the marginal distribution table in the absence of the significance of traditional models.
Usage
ff(dt,m,w,n,q1)
Value
the output from ff()
Arguments
dt
data frame
m
the number of time series
w
the number of predicted values
n
number of values
q1
matrix independent time series values #In the case of m=2, enter the independent string values as follows(matrix(c())),In the case of m=3, enter the independent string values as follows(matrix(c(),w,m-1,byrow=T))
x=rnorm(17,10,1)
y=rnorm(17,10,1)
data=data.frame(x,y)
print("Enter independent time series values")
q1=list(q=matrix(c(scan(,,quiet=TRUE)),1,2-1))
10.5ff(data,2,1,17,q1)