Learn R Programming

MBCluster.Seq (version 1.0)

plotHybrid.Tree: Plot the tree structure of the hybrid-hierarchical clustering results.

Description

Each vertical bar at the bottom represents the profile of one genes, with the colors indicating the log folder changes relative to the mean expression of the gene. The number at the bottom shows the labels of the smallest clusters

Usage

plotHybrid.Tree(merge, cluster, logFC, tree.title = NULL,colorful=FALSE)

Arguments

merge
the merging steps to build the tree, can be the results of Hybrid.Tree()
cluster
The assignment of genes at the bottom of the tree, should be the same as the input for Hybrid.Tree
logFC
The log-fold change of each gene, a table of G rows and I columns
tree.title
The title of the plot
colorful
if FALSE, plot will be in black-white color; if TRUE, plot will be in heat colors (library 'grDevices' might be needed).

Examples

Run this code
###### run the following codes in order
#
# data("Count")     ## a sample data set with RNA-seq expressions 
#                   ## for 1000 genes, 4 treatment and 2 replicates
# head(Count)
# GeneID=1:nrow(Count)
# Normalizer=rep(1,ncol(Count))
# Treatment=rep(1:4,2)
# mydata=RNASeq.Data(Count,Normalize=NULL,Treatment,GeneID) 
#                   ## standardized RNA-seq data
# c0=KmeansPlus.RNASeq(mydata,nK=10)$centers
#                   ## choose 10 cluster centers to initialize the clustering 
# cls=Cluster.RNASeq(data=mydata,model="nbinom",centers=c0,method="EM")$cluster
#                   ## use EM algorithm to cluster genes
# tr=Hybrid.Tree(data=mydata,cluste=cls,model="nbinom")
#                   ## bulild a tree structure for the resulting 10 clusters
# plotHybrid.Tree(merge=tr,cluster=cls,logFC=mydata$logFC,tree.title=NULL)
#                   ## plot the tree structure

Run the code above in your browser using DataLab