## Not run:
# library(sem)
#
# ###############
# ## EXAMPLE 1; a CFA model with three latent variables and nine indicators.
# ###############
#
# # To specify the model
# model.cfa<-specify.model()
# xi1 -> x1, lambda1, 0.6
# xi1 -> x2, lambda2, 0.7
# xi1 -> x3, lambda3, 0.8
# xi2 -> x4, lambda4, 0.65
# xi2 -> x5, lambda5, 0.75
# xi2 -> x6, lambda6, 0.85
# xi3 -> x7, lambda7, 0.5
# xi3 -> x8, lambda8, 0.7
# xi3 -> x9, lambda9, 0.9
# xi1 <-> xi1, NA, 1
# xi2 <-> xi2, NA, 1
# xi3 <-> xi3, NA, 1
# xi1 <-> xi2, phi21, 0.5
# xi1 <-> xi3, phi31, 0.4
# xi2 <-> xi3, phi32, 0.6
# x1 <-> x1, delta11, 0.36
# x2 <-> x2, delta22, 0.5
# x3 <-> x3, delta33, 0.9
# x4 <-> x4, delta44, 0.4
# x5 <-> x5, delta55, 0.5
# x6 <-> x6, delta66, 0.6
# x7 <-> x7, delta77, 0.6
# x8 <-> x8, delta88, 0.7
# x9 <-> x9, delta99, 0.7
#
#
# # To specify model parameters
# theta <- c(0.6, 0.7, 0.8,
# 0.65, 0.75, 0.85,
# 0.5, 0.7, 0.9,
# 0.5, 0.4, 0.6,
# 0.8, 0.6, 0.5,
# 0.6, 0.5, 0.4,
# 0.7, 0.7, 0.6)
#
# names(theta) <- c("lambda1", "lambda2", "lambda3",
# "lambda4","lambda5", "lambda6",
# "lambda7", "lambda8","lambda9",
# "phi21", "phi31", "phi32",
# "delta11", "delta22","delta33",
# "delta44", "delta55","delta66",
# "delta77", "delta88","delta99")
#
# res.matrix <- Sigma.2.SigmaStar(model=model.cfa, model.par=theta,
# latent.var=c("xi1", "xi2", "xi3"), discrep=0.06)
#
# # res.matrix
#
# # To verify the returned covariance matrix; the model chi-square
# # should be equal to (N-1) times the specified discrepancy value.
# # Also the "point estimates" of model parameters should be
# # equal to the specified model parameters
#
# # res.sem<-sem(model.cfa, res.matrix$Sigma.star, 1001)
# # summary(res.sem)
#
# # To construct a covariance matrix so that the model has
# # a desired population RMSEA value, one can transform the RMSEA
# # value to the discrepancy value
#
# res.matrix <- Sigma.2.SigmaStar(model=model.cfa, model.par=theta,
# latent.var=c("xi1", "xi2", "xi3"), discrep=0.075*0.075*24)
#
# # To verify the population RMSEA value
# # res.sem<-sem(model.cfa, res.matrix$Sigma.star, 1000000)
# # summary(res.sem)
#
# ###############
# ## EXAMPLE 2; an SEM model with five latent variables
# ###############
#
# model.5f <- specify.model()
# eta1 -> y4, NA, 1
# eta1 -> y5, lambda5, NA
# eta2 -> y1, NA, 1
# eta2 -> y2, lambda2, NA
# eta2 -> y3, lambda3, NA
# xi1 -> x1, NA, 1
# xi1 -> x2, lambda6, NA
# xi1 -> x3, lambda7, NA
# xi2 -> x4, NA, 1
# xi2 -> x5, lambda8, NA
# xi3 -> x6, NA, 1
# xi3 -> x7, lambda9, NA
# xi3 -> x8, lambda10, NA
# xi1 -> eta1, gamma11, NA
# xi2 -> eta1, gamma12, NA
# xi3 -> eta1, gamma13, NA
# xi3 -> eta2, gamma23, NA
# eta1 -> eta2, beta21, NA
# xi1 <-> xi2, phi21, NA
# xi1 <-> xi3, phi31, NA
# xi3 <-> xi2, phi32, NA
# xi1 <-> xi1, phi11, NA
# xi2 <-> xi2, phi22, NA
# xi3 <-> xi3, phi33, NA
# eta1 <-> eta1, psi11, NA
# eta2 <-> eta2, psi22, NA
# y1 <-> y1, eplison11, NA
# y2 <-> y2, eplison22, NA
# y3 <-> y3, eplison33, NA
# y4 <-> y4, eplison44, NA
# y5 <-> y5, eplison55, NA
# x1 <-> x1, delta11, NA
# x2 <-> x2, delta22, NA
# x3 <-> x3, delta33, NA
# x4 <-> x4, delta44, NA
# x5 <-> x5, delta55, NA
# x6 <-> x6, delta66, NA
# x7 <-> x7, delta77, NA
# x8 <-> x8, delta88, NA
#
#
# theta <- c(0.84, 0.8, 0.9,
# 1.26, 0.75, 1.43, 1.58, 0.83,
# 0.4, 0.98, 0.52, 0.6,0.47,
# 0.12, 0.14, 0.07,
# 0.44, 0.22, 0.25,
# 0.3, 0.47,
# 0.37, 0.5, 0.4, 0.4, 0.58,
# 0.56,0.3, 0.6, 0.77, 0.54, 0.75, 0.37, 0.6)
#
# names(theta) <- c(
# "lambda5","lambda2","lambda3",
# "lambda6","lambda7","lambda8","lambda9","lambda10" ,
# "gamma11", "gamma12","gamma13" , "gamma23" , "beta21",
# "phi21","phi31", "phi32",
# "phi11","phi22", "phi33",
# "psi11" , "psi22" ,
# "eplison11","eplison22" ,"eplison33", "eplison44" ,"eplison55",
# "delta11" , "delta22" , "delta33" , "delta44" , "delta55" , "delta66",
# "delta77" , "delta88")
#
# # To construct a covariance matrix so that the model has
# # a population RMSEA of 0.08
#
# res.matrix <- Sigma.2.SigmaStar(model=model.5f, model.par=theta,
# latent.var=c("xi1", "xi2", "xi3", "eta1","eta2"), discrep=0.08*0.08*57)
#
# # To verify
# # res.sem<- sem(model.5f, res.matrix$Sigma.star, 1000000)
# # summary(res.sem)
# ## End(Not run)
Run the code above in your browser using DataLab