ss.aipe.smd
calls upon to calculate the appropriate sample size
for the standardized mean difference such that the expected value of the confidence interval
is sufficiently narrow.
ss.aipe.smd.full(delta, conf.level, width, ...)
ss.aipe.smd.lower(delta, conf.level, width, ...)
ss.aipe.smd.upper(delta, conf.level, width, ...)
Lower
, Upper
, Full
) region of the confidence intervalss.aipe.smd.full
returns the exact value. However, ss.aipe.smd.lower
and ss.aipe.smd.upper
provide approximate sample size values.Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions, Educational and Psychological Measurement, 61, 532--574.
Hedges, L. V. (1981). Distribution theory for Glass's Estimator of effect size and related estimators. Journal of Educational Statistics, 2, 107--128.
Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psychological Measurement, 65, 51--69.
Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining Power or Obtaining Precision: Delineating Methods of Sample-Size Planning, Evaluation and the Health Professions, 26, 258--287.
Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4), 363--385.
Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221--257). Mahwah, NJ: Lawrence Erlbaum.
ss.aipe.smd