Learn R Programming

MBESS (version 4.1.0)

ci.R2: Confidence interval for the population squared multiple correlation coefficient

Description

A function to calculate the confidence interval for the population squared multiple correlation coefficient.

Usage

ci.R2(R2 = NULL, df.1 = NULL, df.2 = NULL, conf.level = .95, Random.Predictors=TRUE, Random.Regressors, F.value = NULL, N = NULL, p = NULL, K, alpha.lower = NULL, alpha.upper = NULL, tol = 1e-09)

Arguments

R2
squared multiple correlation coefficient
df.1
numerator degrees of freedom
df.2
denominator degrees of freedom
conf.level
confidence interval coverage; 1-Type I error rate
Random.Predictors
whether or not the predictor variables are random or fixed (random is default)
Random.Regressors
an alias for Random.Predictors; Random.Regressors overrides Random.Predictors
F.value
obtained F-value
N
sample size
p
number of predictors
K
alias for p, the number of predictors
alpha.lower
Type I error for the lower confidence limit
alpha.upper
Type I error for the upper confidence limit
tol
tolerance for iterative convergence

Value

Details

This function can be used with random predictor variables (Random.Predictors=TRUE) or when predictor variables are fixed (Random.Predictors=FALSE). In many applications of multiple regression, predictor variables are random, which is the default in this function.

For random predictors, the function implements the procedure of Lee (1971), which was implemented by Algina and Olejnik (2000; specifically in their ci.smcc.bisec.sas SAS script). When Random.Predictors=TRUE, the function implements code that is in part based on the Alginia and Olejnik (2000) SAS script.

When Random.Predictors=FALSE, and thus the predictors are planned and thus fixed in hypothetical replications of the study, the confidence limits are based on a noncentral $F$-distribution (see conf.limits.ncf).

References

Algina, J. & Olejnik, S. (2000). Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient. Multivariate Behavioral Research, 35, 119--136.

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20 (8), 1--24.

Lee, Y. S. (1971). Some results on the sampling distribution of the multiple correlation coefficient. Journal of the Royal Statistical Society, B, 33, 117--130.

Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.

Steiger, J. H. & Fouladi, R. T. (1992) R2: A computer program for interval estimation, power calculation, and hypothesis testing for the squared multiple correlation. Behavior research methods, instruments and computers, 4, 581--582.

See Also

ss.aipe.R2, conf.limits.ncf

Examples

Run this code
# For random predictor variables.
# ci.R2(R2=.25, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# ci.R2(F.value=6.266667, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# For fixed predictor variables.
# ci.R2(R2=.25, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# ci.R2(F.value=6.266667, N=100, K=5, conf.level=.95, Random.Predictors=TRUE)

# One sided confidence intervals when predictors are random.
# ci.R2(R2=.25, N=100, K=5, alpha.lower=.05, alpha.upper=0, conf.level=NULL,
# Random.Predictors=TRUE)

# ci.R2(R2=.25, N=100, K=5, alpha.lower=0, alpha.upper=.05, conf.level=NULL,
# Random.Predictors=TRUE)

# One sided confidence intervals when predictors are fixed.
# ci.R2(R2=.25, N=100, K=5, alpha.lower=.05, alpha.upper=0, conf.level=NULL,
# Random.Predictors=FALSE)

# ci.R2(R2=.25, N=100, K=5, alpha.lower=0, alpha.upper=.05, conf.level=NULL,
# Random.Predictors=FALSE)

Run the code above in your browser using DataLab