ci.rc(b.k, SE.b.k = NULL, s.Y = NULL, s.X = NULL, N, K, R2.Y_X = NULL,
R2.k_X.without.k = NULL, conf.level = 0.95, R2.Y_X.without.k = NULL,
t.value = NULL, alpha.lower = NULL, alpha.upper = NULL,
Noncentral = FALSE, Suppress.Statement = FALSE, ...)
TRUE
or FALSE
statement specifying whether or not the noncentral approach to
confidence intervals should be used TRUE
or FALSE
statement specifying whether or not a statement should be printed
that identifies the type of confidence interval formedci.reg.coef
in MBESS, but has a different naming system. See ci.reg.coef
for more details.For standardized variables, do not specify the standard deviation of the variables and input the
standardized regression coefficient for b.k
.
Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, 305--321.
Kelley, K. & Maxwell, S. E. (2008). Power and accuracy for omnibus and targeted effects: Issues of sample size planning with applications to Multiple Regression. Handbook of Social Research Methods, J. Brannon, P. Alasuutari, and L. Bickman (Eds.). New York, NY: Sage Publications.
Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.
Steiger, J. H. (2004). Beyond the F Test: Effect size confidence intervals and tests of close fit in the Analysis of Variance and Contrast Analysis. Psychological Methods, 9, 164--182.
ss.aipe.reg.coef
, conf.limits.nct
, ci.reg.coef
, ci.src