ci.reg.coef(b.j, SE.b.j=NULL, s.Y=NULL, s.X=NULL, N, p, R2.Y_X=NULL,
R2.j_X.without.j=NULL, conf.level=0.95, R2.Y_X.without.j=NULL,
t.value=NULL, alpha.lower=NULL, alpha.upper=NULL, Noncentral=FALSE,
Suppress.Statement=FALSE, ...)
Y
from the p
predictor variablesj
th predictor variable (i.e., the predictor of interest) from the remaining p
-1 predictor variablesY
from the p
-1 predictor variable with the j
th predictor of interest excludedj
th predictor equals zeroTRUE
or FALSE
, specifying whether or not the noncentral approach to confidence intervals should be usedTRUE
/FALSE
statement specifying whether or not a statement should be printed that identifies the type of confidence interval formedb.j
.Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, 305--321.
Kelley, K. & Maxwell, S. E. (2008). Sample Size Planning with applications to multiple regression: Power and accuracy for omnibus and targeted effects. In P. Alasuuta, J. Brannen, & L. Bickman (Eds.), The Sage handbook of social research methods (pp. 166--192). Newbury Park, CA: Sage.
Smithson, M. (2003). Confidence intervals. New York, NY: Sage Publications.
ss.aipe.reg.coef
, conf.limits.nct
, ci.rc
, ci.src