Learn R Programming

MBESS (version 4.1.0)

conf.limits.nc.chisq: Confidence limits for noncentral chi square parameters

Description

Function to determine the noncentral parameter that leads to the observed Chi.Square-value, so that a confidence interval for the population noncentral chi-squrae value can be formed.

Usage

conf.limits.nc.chisq(Chi.Square=NULL, conf.level=.95, df=NULL, alpha.lower=NULL, alpha.upper=NULL, tol=1e-9, Jumping.Prop=.10)

Arguments

Chi.Square
the observed chi-square value
conf.level
the desired degree of confidence for the interval
df
the degrees of freedom
alpha.lower
Type I error for the lower confidence limit
alpha.upper
Type I error for the upper confidence limit
tol
tolerance for iterative convergence
Jumping.Prop
Value used in the iterative scheme to determine the noncentral parameters necessary for confidence interval construction using noncentral chi square-distributions (0 < Jumping.Prop < 1)

Value

Details

If the function fails (or if a function relying upon this function fails), adjust the Jumping.Prop (to a smaller value).

See Also

conf.limits.nct, conf.limits.ncf

Examples

Run this code
# A typical call to the function.
conf.limits.nc.chisq(Chi.Square=30, conf.level=.95, df=15)

# A one sided (upper) confidence interval.
 conf.limits.nc.chisq(Chi.Square=30, alpha.lower=0, alpha.upper=.05, 
 conf.level=NULL, df=15)

Run the code above in your browser using DataLab