Learn R Programming

MBESS (version 4.1.0)

ss.aipe.cv: Sample size planning for the coefficient of variation given the goal of Accuracy in Parameter Estimation approach to sample size planning

Description

Determines the necessary sample size so that the expected confidence interval width for the coefficient of variation will be sufficiently narrow, optionally with a desired degree of certainty that the interval will not be wider than desired.

Usage

ss.aipe.cv(C.of.V = NULL, width = NULL, conf.level = 0.95, degree.of.certainty = NULL, assurance=NULL, certainty=NULL, mu = NULL, sigma = NULL, alpha.lower = NULL, alpha.upper = NULL, Suppress.Statement = TRUE, sup.int.warns = TRUE, ...)

Arguments

C.of.V
population coefficient of variation on which the sample size procedure is based
width
desired (full) width of the confidence interval
conf.level
confidence interval coverage; 1-Type I error rate
degree.of.certainty
value with which confidence can be placed that describes the likelihood of obtaining a confidence interval less than the value specified (e.g., .80, .90, .95)
assurance
an alias for degree.of.certainty
certainty
an alias for degree.of.certainty
mu
population mean (specified with sigma when C.of.V is not specified)
sigma
population standard deviation (specified with mu when C.of.V) is not specified)
alpha.lower
Type I error for the lower confidence limit
alpha.upper
Type I error for the upper confidence limit
Suppress.Statement
Suppress a message restating the input specifications
sup.int.warns
suppress internal function warnings (e.g., warnings associated with qt)
...
for modifying parameters of functions this function calls

Value

See Also

ss.aipe.cv.sensitivity, cv

Examples

Run this code
# Suppose one wishes to have a confidence interval with an expected width of .10 
# for a 99% confidence interval when the population coefficient of variation is .25.
ss.aipe.cv(C.of.V=.1, width=.1, conf.level=.99)

# Ensuring that the confidence interval will be sufficiently narrow with a 99% 
# certainty for the situation above.
ss.aipe.cv(C.of.V=.1, width=.1, conf.level=.99, degree.of.certainty=.99)

Run the code above in your browser using DataLab