Learn R Programming

MBESS (version 4.1.0)

ss.aipe.rc: Sample size necessary for the accuracy in parameter estimation approach for an unstandardized regression coefficient of interest

Description

A function used to plan sample size from the accuracy in parameter estimation perspective for an unstandardized regression coefficient of interest given the input specification.

Usage

ss.aipe.rc(Rho2.Y_X = NULL, Rho2.k_X.without.k = NULL, K = NULL, b.k = NULL, width, which.width = "Full", sigma.Y = 1, sigma.X.k = 1, RHO.XX = NULL, Rho.YX = NULL, which.predictor = NULL, alpha.lower = NULL, alpha.upper = NULL, conf.level = .95, degree.of.certainty = NULL, assurance=NULL, certainty=NULL, Suppress.Statement = FALSE)

Arguments

Rho2.Y_X
Population value of the squared multiple correlation coefficient
Rho2.k_X.without.k
Population value of the squared multiple correlation coefficient predicting the kth predictor variable from the remaining K-1 predictor variables
K
the number of predictor variables
b.k
the regression coefficient for the kth predictor variable (i.e., the predictor of interest)
width
the desired width of the confidence interval
which.width
which width ("Full", "Lower", or "Upper") the width refers to (at present, only "Full" can be specified)
sigma.Y
the population standard deviation of Y (i.e., the dependent variables)
sigma.X.k
the population standard deviation of the kth X variable (i.e., the predictor variable of interest)
RHO.XX
Population correlation matrix for the p predictor variables
Rho.YX
Population K length vector of correlation between the dependent variable (Y) and the K independent variables
which.predictor
identifies which of the K predictors is of interest
alpha.lower
Type I error rate for the lower confidence interval limit
alpha.upper
Type I error rate for the upper confidence interval limit
conf.level
desired level of confidence for the computed interval (i.e., 1 - the Type I error rate)
degree.of.certainty
degree of certainty that the obtained confidence interval will be sufficiently narrow
assurance
an alias for degree.of.certainty
certainty
an alias for degree.of.certainty
Suppress.Statement
TRUE or FALSE statement whether or not a sentence describing the situation defined is printed with the necessary sample size

Value

Returns the necessary sample size in order for the goals of accuracy in parameter estimation to be satisfied for the confidence interval for a particular regression coefficient given the input specifications.

Details

Not all of the arguments need to be specified, only those that provide all of the necessary information so that the sample size can be determined for the conditions specified.

References

Kelley, K. & Maxwel, S. E. (2003). Sample size for Multiple Regression: Obtaining regression coefficients that are accuracy, not simply significant. Psychological Methods, 8, 305--321.

See Also

ss.aipe.reg.coef.sensitivity, conf.limits.nct,

ss.aipe.reg.coef, ss.aipe.src

Examples

Run this code
## Not run: 
# # Exchangable correlation structure
# # Rho.YX <- c(.3, .3, .3, .3, .3)
# # RHO.XX <- rbind(c(1, .5, .5, .5, .5), c(.5, 1, .5, .5, .5), c(.5, .5, 1, .5, .5),
# # c(.5, .5, .5, 1, .5), c(.5, .5, .5, .5, 1))
# 
# # ss.aipe.rc(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# # Rho.YX=Rho.YX, which.predictor=1, conf.level=1-.05)
# 
# # ss.aipe.rc(width=.1, which.width="Full", sigma.Y=1, sigma.X=1, RHO.XX=RHO.XX,
# # Rho.YX=Rho.YX, which.predictor=1,  conf.level=1-.05, degree.of.certainty=.85)
# ## End(Not run)

Run the code above in your browser using DataLab