Learn R Programming

MBESS (version 4.1.0)

ss.aipe.rc.sensitivity: Sensitivity analysis for sample size planing from the Accuracy in Parameter Estimation Perspective for the unstandardized regression coefficient

Description

Performs a sensitivity analysis when planning sample size from the Accuracy in Parameter Estimation Perspective for the unstandardized regression coefficient.

Usage

ss.aipe.rc.sensitivity(True.Var.Y = NULL, True.Cov.YX = NULL, True.Cov.XX = NULL, Estimated.Var.Y = NULL, Estimated.Cov.YX = NULL, Estimated.Cov.XX = NULL, Specified.N = NULL, which.predictor = 1, w = NULL, Noncentral = FALSE, Standardize = FALSE, conf.level = 0.95, degree.of.certainty = NULL, assurance=NULL, certainty=NULL, G = 1000, print.iter = TRUE)

Arguments

True.Var.Y
Population variance of the dependent variable (Y)
True.Cov.YX
Population covariances vector between the p predictor variables and the dependent variable (Y)
True.Cov.XX
Population covariance matrix of the p predictor variables
Estimated.Var.Y
Estimated variance of the dependent variable (Y)
Estimated.Cov.YX
Estimated covariances vector between the p predictor variables and the dependent variable (Y)
Estimated.Cov.XX
Estimated Population covariance matrix of the p predictor variables
Specified.N
Directly specified sample size (instead of using Estimated.Rho.YX and Estimated.RHO.XX)
which.predictor
identifies which of the p predictors is of interest
w
desired confidence interval width for the regression coefficient of interest
Noncentral
specify with a TRUE or FALSE statement whether or not the noncentral approach to sample size planning should be used
Standardize
specify with a TRUE or FALSE statement whether or not the regression coefficient will be standardized; default is TRUE
conf.level
desired level of confidence for the computed interval (i.e., 1 - the Type I error rate)
degree.of.certainty
degree of certainty that the obtained confidence interval will be sufficiently narrow (i.e., the probability that the observed interval will be no larger than desired).
assurance
an alias for degree.of.certainty
certainty
an alias for degree.of.certainty
G
the number of generations/replication of the simulation student within the function
print.iter
specify with a TRUE/FALSE statement if the iteration number should be printed as the simulation within the function runs

Value

Details

Direct specification of True.Rho.YX and True.RHO.XX is necessary, even if one is interested in a single regression coefficient, so that the covariance/correlation structure can be specified when when the simulation student within the function runs.

References

Kelley, K. & Maxwell, S. E. (2003). Sample size for Multiple Regression: Obtaining regression coefficients that are accuracy, not simply significant. Psychological Methods, 8, 305--321.

See Also

ss.aipe.reg.coef.sensitivity, ss.aipe.src.sensitivity,

ss.aipe.reg.coef, ci.reg.coef