## Not run:
# ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,
# cor.est=.3, psi.square=.2, conf.level=.95, assurance=NULL, initial.iter=500,
# final.iter=5000)
#
# # Same as above but now 'assurance' is used.
# ss.aipe.reliability (model='Parallel', type='Normal Theory', width=.1, i=6,
# cor.est=.3, psi.square=.2, conf.level=.95, assurance=.85, initial.iter=500,
# final.iter=5000)
#
#
# # Similar to the above but now the "True Score" model is used. Note how the psi.square changes
# # from a scalar to a vector of length i (number of items).
# # Also note, however, that cor.est is a single value (due to the true-score model specified)
# ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,
# cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
# assurance=.85, initial.iter=500, final.iter=5000)
#
# ss.aipe.reliability (model='True Score', type='Normal Theory', width=.1, i=5,
# cor.est=.3, psi.square=c(.2, .3, .3, .2, .3), conf.level=.95,
# assurance=.85, initial.iter=500, final.iter=5000)
#
# # Now, a congeneric model is used with the factor analytic appraoch. This is likely the
# # most realistic scenario (and maps onto the ideas of Coefficient Omega).
# ss.aipe.reliability (model='Congeneric', type='Factor Analytic', width=.1, i=5,
# lambda=c(.4, .4, .3, .3, .5), psi.square=c(.2, .4, .3, .3, .2), conf.level=.95,
# assurance=.85, initial.iter=1000, final.iter=5000)
#
# # Now, the presumed population matrix among the items is used.
# Pop.Mat<-rbind(c(1.0000000, 0.3813850, 0.4216370, 0.3651484, 0.4472136),
# c(0.3813850, 1.0000000, 0.4020151, 0.3481553, 0.4264014), c(0.4216370,
# 0.4020151, 1.0000000, 0.3849002, 0.4714045), c(0.3651484, 0.3481553,
# 0.3849002, 1.0000000, 0.4082483), c(0.4472136, 0.4264014, 0.4714045,
# 0.4082483, 1.0000000))
#
# ss.aipe.reliability (model='True Score', type='Normal Theory', width=.15,
# S=Pop.Mat, conf.level=.95, assurance=.85, initial.iter=1000, final.iter=5000)
#
# ## End(Not run)
Run the code above in your browser using DataLab