ss.aipe.sc.ancova(Psi = NULL, sigma.anova = NULL, sigma.ancova = NULL,
psi = NULL, ratio = NULL, rho = NULL, divisor = "s.ancova",
c.weights, width, conf.level = 0.95, assurance = NULL, ...)
sigma.ancova
over sigma.anova
"s.ancova"
or "s.anova"
NULL
or between zero and unity)An ANCOVA contrast can be standardized in at least two ways: (a) divided by the error standard deviation of the ANOVA model, (b) divided by the error standard deviation of the ANCOVA model. This function can be used to analyze both types of standardized ANCOVA contrasts.
Not all of the arguments about the effect sizes need to be specified. If divisor="s.ancova"
is
used in the argument, then input either (a) psi
, or (b) Psi
and s.ancova
.
If divisor="s.anova"
is used in the argument, possible specifications
are (a) Psi
, s.ancova
, and s.anova
; (b) psi
, and ratio
;
(c) psi
, and rho
.
Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11 (4), 363--385.
Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and Statistical Psychology, 65, 350--370.
Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221--257). Mahwah, NJ: Lawrence Erlbaum.
ss.aipe.sc
, ss.aipe.sc.ancova.sensitivity
## Not run:
# ss.aipe.sc.ancova(psi=.8, width=.5, c.weights=c(.5, .5, 0, -1))
#
# ss.aipe.sc.ancova(psi=.8, ratio=.6, width=.5,
# c.weights=c(.5, .5, 0, -1), divisor="s.anova")
#
# ss.aipe.sc.ancova(psi=.5, rho=.4, width=.3,
# c.weights=c(.5, .5, 0, -1), divisor="s.anova")
# ## End(Not run)
Run the code above in your browser using DataLab