Learn R Programming

MBESS (version 4.1.0)

ss.aipe.sc.ancova: Sample size planning from the AIPE perspective for standardized ANCOVA contrasts

Description

Sample size planning from the accuracy in parameter estimation (AIPE) perspective for standardized ANCOVA contrasts.

Usage

ss.aipe.sc.ancova(Psi = NULL, sigma.anova = NULL, sigma.ancova = NULL, psi = NULL, ratio = NULL, rho = NULL, divisor = "s.ancova", c.weights, width, conf.level = 0.95, assurance = NULL, ...)

Arguments

Psi
the population unstandardized ANCOVA (adjusted) contrast
sigma.anova
the population error standard deviation of the ANOVA model
sigma.ancova
the population error standard deviation of the ANCOVA model
psi
the population standardized ANCOVA (adjusted) contrast
ratio
the ratio of sigma.ancova over sigma.anova
rho
the population correlation coefficient between the response and the covariate
divisor
which error standard deviation to be used in standardizing the contrast; the value can be either "s.ancova" or "s.anova"
c.weights
contrast weights
width
the desired full width of the obtained confidence interval
conf.level
the desired confidence interval coverage, (i.e., 1 - Type I error rate)
assurance
parameter to ensure that the obtained confidence interval width is narrower than the desired width with a specified degree of certainty (must be NULL or between zero and unity)
...
allows one to potentially include parameter values for inner functions

Value

This function returns the sample size per group.

Details

The sample size planning method this function is based on is developed in the context of simple (i.e., one-response-one-covariate) ANCOVA model and randomized design (i.e., same population covariate mean across groups).

An ANCOVA contrast can be standardized in at least two ways: (a) divided by the error standard deviation of the ANOVA model, (b) divided by the error standard deviation of the ANCOVA model. This function can be used to analyze both types of standardized ANCOVA contrasts.

Not all of the arguments about the effect sizes need to be specified. If divisor="s.ancova" is used in the argument, then input either (a) psi, or (b) Psi and s.ancova. If divisor="s.anova" is used in the argument, possible specifications are (a) Psi, s.ancova, and s.anova; (b) psi, and ratio; (c) psi, and rho.

References

Kelley, K. (2007). Constructing confidence intervals for standardized effect sizes: Theory, application, and implementation. Journal of Statistical Software, 20 (8), 1--24.

Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11 (4), 363--385.

Lai, K., & Kelley, K. (2012). Accuracy in parameter estimation for ANCOVA and ANOVA contrasts: Sample size planning via narrow confidence intervals. British Journal of Mathematical and Statistical Psychology, 65, 350--370.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221--257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.sc, ss.aipe.sc.ancova.sensitivity

Examples

Run this code
## Not run: 
# ss.aipe.sc.ancova(psi=.8, width=.5, c.weights=c(.5, .5, 0, -1))
# 
# ss.aipe.sc.ancova(psi=.8, ratio=.6, width=.5, 
# c.weights=c(.5, .5, 0, -1), divisor="s.anova")
# 
# ss.aipe.sc.ancova(psi=.5, rho=.4, width=.3, 
# c.weights=c(.5, .5, 0, -1), divisor="s.anova")
# ## End(Not run)

Run the code above in your browser using DataLab