degree.of.certainty.ss.aipe.smd(delta, conf.level, width, which.width="Full",
degree.of.certainty=NULL, assurance=NULL, certainty=NULL, ...)Full, Lower, and Upper widths) region of the confidence intervalwidth argument refers identifies the width of interest (i.e., Full, Lower, and Upper widths)degree.of.certainty degree.of.certaintypt() function is limited to accurate values
when the the noncentral parameter is less than 37.62.Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions, Educational and Psychological Measurement, 61, 532--574.
Hedges, L. V. (1981). Distribution theory for Glass's Estimator of effect size and related estimators. Journal of Educational Statistics, 2, 107--128.
Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psychological Measurement, 65, 51--69.
Kelley, K., Maxwell, S. E., & Rausch, J. R. (2003). Obtaining Power or Obtaining Precision: Delineating Methods of Sample-Size Planning, Evaluation and the Health Professions, 26, 258--287.
Kelley, K., & Rausch, J. R. (2006). Sample size planning for the standardized mean difference: Accuracy in Parameter Estimation via narrow confidence intervals. Psychological Methods, 11(4), 363--385.
Steiger, J. H., & Fouladi, R. T. (1997) Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there where no significance tests? (pp. 221-257). Mahwah, NJ: Lawrence Erlbaum.
smd, smd.c, ci.smd, ci.smd.c,
conf.limits.nct, power.t.test, ss.aipe.smd.lower,
ss.aipe.smd.upper, ss.aipe.smd.full# ss.aipe.smd(delta=.5, conf.level=.95, width=.30)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.8)
# ss.aipe.smd(delta=.5, conf.level=.95, width=.30, degree.of.certainty=.95)
Run the code above in your browser using DataLab