Learn R Programming

MBESS (version 4.1.0)

ss.aipe.smd.sensitivity: Sensitivity analysis for sample size given the Accuracy in Parameter Estimation approach for the standardized mean difference.

Description

Performs sensitivity analysis for sample size determination for the standardized mean difference given a population and a standardized mean difference. Allows one to determine the effect of being wrong when estimating the population standardized mean difference in terms of the width of the obtained (two-sided) confidence intervals.

Usage

ss.aipe.smd.sensitivity(true.delta = NULL, estimated.delta = NULL, desired.width = NULL, selected.n=NULL, assurance=NULL, certainty = NULL, conf.level = 0.95, G = 10000, print.iter = TRUE, ...)

Arguments

true.delta
population standardized mean difference
estimated.delta
estimated standardized mean difference; can be true.delta to perform standard simulations
desired.width
describe full width for the confidence interval around the population standardized mean difference
selected.n
selected sample size to use in order to determine distributional properties of at a given value of sample size
assurance
parameter to ensure confidence interval width with a specified degree of certainty (must be NULL or between zero and unity)
certainty
an alias for assurance
conf.level
the desired degree of confidence (i.e., 1-Type I error rate).
G
number of generations (i.e., replications) of the simulation
print.iter
to print the current value of the iterations
...
for modifying parameters of functions this function calls

Value

Details

For sensitivity analysis when planning sample size given the desire to obtain narrow confidence intervals for the population standardized mean difference. Given a population value and an estimated value, one can determine the effects of incorrectly specifying the population standardized mean difference (true.delta) on the obtained widths of the confidence intervals. Also, one can evaluate the percent of the confidence intervals that are less than the desired width (especially when modifying the certainty parameter); see ss.aipe.smd)

Alternatively, one can specify selected.n to determine the results at a particular sample size (when doing this estimated.delta cannot be specified).

References

Cumming, G. & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions, Educational and Psychological Measurement, 61, 532--574.

Hedges, L. V. (1981). Distribution theory for Glass's Estimator of effect size and related estimators. Journal of Educational Statistics, 2, 107--128.

Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals, Educational and Psychological Measurement, 65, 51--69.

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the evaluation of statistical methods. In L. L. Harlow, S. A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? (pp. 221--257). Mahwah, NJ: Lawrence Erlbaum.

See Also

ss.aipe.smd

Examples

Run this code
# Since 'true.delta' equals 'estimated.delta', this usage 
# returns the results of a correctly specified situation.
# Note that 'G' should be large (50 is used to make the example run easily)
# Res.1 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.5, 
# desired.width=.30, certainty=NULL, conf.level=.95, G=50,
# print.iter=FALSE)

# Lists contained in Res.1.
# names(Res.1) 

#Objects contained in the 'Results' lists.
# names(Res.1$Results) 

#Extract d from the Results list of Res.1.
# d <- Res.1$Results$d 

# hist(d)

# Pull out summary measures
# Res.1$Summary

# True standardized mean difference is .4, but specified at .5.
# Change 'G' to some large number (e.g., G=5,000)
# Res.2 <- ss.aipe.smd.sensitivity(true.delta=.4, estimated.delta=.5, 
# desired.width=.30, certainty=NULL, conf.level=.95, G=50, 
# print.iter=FALSE)

# The effect of the misspecification on mean confidence intervals is:
# Res.2$Summary$mean.full.width

# True standardized mean difference is .5, but specified at .4.
# Res.3 <- ss.aipe.smd.sensitivity(true.delta=.5, estimated.delta=.4, 
# desired.width=.30, certainty=NULL, conf.level=.95, G=50, 
# print.iter=FALSE)

# The effect of the misspecification on mean confidence intervals is:
# Res.3$Summary$mean.full.width

Run the code above in your browser using DataLab