
ss.power.pcm(beta, tau, level.1.variance, frequency, duration, desired.power = NULL,
N = NULL, alpha.level = 0.05, standardized = TRUE, directional = FALSE)
TRUE
) or two (FALSE
) tailed test be performed.# Example from Raudenbush and Liu (2001)
# ss.power.pcm(beta=-.4, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
# desired.power=.80, alpha.level=.05, standardized=TRUE, directional=FALSE)
ss.power.pcm(beta=-.4, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
N=238, alpha.level=.05, standardized=TRUE, directional=FALSE)
# The standardized effect size is obtained as beta/sqrt(tau): -.4/sqrt(.003) = -.0219.
# ss.power.pcm(beta=-.0219, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
# desired.power=.80, alpha.level=.05, standardized=FALSE, directional=FALSE)
ss.power.pcm(beta=-.0219, tau=.003, level.1.variance=.0262, frequency=2, duration=2,
N=238, alpha.level=.05, standardized=FALSE, directional=FALSE)
Run the code above in your browser using DataLab