## Not run:
# # Note that the following example works fine in R (<2.7.0), but not in
# # the development version of R-2.7.0 (the cause can be either in this
# # function or in the R program)
#
# # data(Gardner.LD)
# # library(nlme)
# # Full.grouped.Gardner.LD <- groupedData(Score ~ Trial|ID, data=Gardner.LD, order.groups=FALSE)
#
# # Examination of the plot reveals that the logistic change model does not adequately describe
# # the trajectories of individuals 6 and 19 (a negative exponential change model would be
# # more appropriate). Thus we remove these two subjects.
# # grouped.Gardner.LD <- Full.grouped.Gardner.LD[!(Full.grouped.Gardner.LD["ID"]==6 |
# # Full.grouped.Gardner.LD["ID"]==19),]
#
# # G.L.nlsList<- nlsList(SSlogis,grouped.Gardner.LD)
# # G.L.nlme <- nlme(G.L.nlsList)
# # to visualize individual trajectories: vit.fitted(G.L.nlme)
# # plot 50 percent random trajectories: vit.fitted(G.L.nlme, pct.rand = 50)
# ## End(Not run)
Run the code above in your browser using DataLab