Learn R Programming

MBESS (version 4.1.0)

vit.fitted: Visualize individual trajectories with fitted curve and quality of fit

Description

A function to help visualize individual trajectories in a longitudinal (i.e., analysis of change) context with fitted curve and quality of fit after analyzing the data with lme, lmer, or nlme function.

Usage

vit.fitted(fit.Model, layout = c(3, 3), ylab = "", xlab = "", pct.rand = NULL, number.rand = NULL, subset.ids = NULL, same.scales = TRUE, save.pdf = FALSE, save.eps = FALSE, save.jpg = FALSE, file = "", ...)

Arguments

fit.Model
lme, nlme object produced by nlme package or lmer object produced by lme4 package
layout
define the per-page layout when All.in.One=FALSE
ylab
label for the ordinate (i.e., y-axis; see par)
xlab
label for the abscissa (i.e., x-axis; see par)
pct.rand
percentage of random trajectories to be plotted
number.rand
number of random trajectories to be plotted
subset.ids
id values for a selected subset of individuals to be plotted
same.scales
should the y-axes have the same scales
save.pdf
save a pdf file
save.eps
save a postscript file
save.jpg
save a jpg file
file
file name and file path for the graph(s) to save, if file="" a file would be saved in the current working directory
...
optional plotting specifications

Details

This function uses the fitted model from nlme and lme functions in nlme package, and lmer function in lme4 package. It returns a set of plots of individual observed data, the fitted curves and the quality of fit.

See Also

par, nlme, lme4, lme, lmer, vit.fitted

Examples

Run this code
## Not run: 
# # Note that the following example works fine in R (<2.7.0), but not in 
# # the development version of R-2.7.0 (the cause can be either in this 
# # function or in the R program)
# 
# # data(Gardner.LD)
# # library(nlme)
# # Full.grouped.Gardner.LD <- groupedData(Score ~ Trial|ID, data=Gardner.LD, order.groups=FALSE)    
# 
# # Examination of the plot reveals that the logistic change model does not adequately describe
# # the trajectories of individuals 6 and 19 (a negative exponential change model would be 
# # more appropriate). Thus we remove these two subjects.
# # grouped.Gardner.LD <- Full.grouped.Gardner.LD[!(Full.grouped.Gardner.LD["ID"]==6 | 
# #   Full.grouped.Gardner.LD["ID"]==19),]
# 
# # G.L.nlsList<- nlsList(SSlogis,grouped.Gardner.LD)
# # G.L.nlme <- nlme(G.L.nlsList)
# # to visualize individual trajectories:  vit.fitted(G.L.nlme)
# # plot 50 percent random trajectories:  vit.fitted(G.L.nlme, pct.rand = 50)
# ## End(Not run)

Run the code above in your browser using DataLab