# \donttest{
# Generate an "mb.network" object that stores data in the correct format
network <- mb.network(osteopain)
# Generate a network plot
plot(network, label.distance=3)
# Analyse data using mb.run()
result <- mb.run(network, fun=tloglin())
# Time-course parameters can be explicitly specified
# Correlation between time-points can be accounted for
result <- mb.run(network,
fun=temax(pool.emax="rel", method.emax="common",
pool.et50="rel", method.et50="common"),
rho="dunif(0,1)")
# Explore model fit statistics - plot residual deviances
devplot(result, n.iter=500)
# Generate a forest plot for model results
plot(result)
decision.treats <- c("Pl_0", "Ce_100", "Lu_400", "Ro_125",
"Na_1000", "Na_1500", "Et_10")
# Predict responses for selected treatments
pred <- predict(result, time=c(0:10), E0=8,
treats=decision.treats,
ref.resp=subset(osteopain, treatment=="Pl_0"))
# Plot predicted response
plot(pred, disp.obs=TRUE)
# Rank by Area Under the time-course Curve
ranks <- rank(result, param="auc", lower_better=TRUE, n.iter=500,
treats=decision.treats)
plot(ranks) # Plot histogram of rankings
cumrank(ranks) # Plot cumulative rankograms
# }
Run the code above in your browser using DataLab