Learn R Programming

MBttest (version 1.0.0)

mbetattest: Performance of multiple beta t-test on simulated data

Description

This function is to peform multiple beta t-test method on real data. The result lists geneid or isoformid, gene name, the other information, t-value, p-value, adjusted p-value, adjusted alpha value, rho, and symb. All these lists are ordered by absolution of t-values.

Usage

mbetattest(X, na, nb, W, alpha, file)

Arguments

X
count data of RNA reads with na replicates in condition A ans nb replicates in condition B.
na
number of replicate libraries in condition A.
nb
number of replicate libraries in condition B.
W
numeric parameter, called omega that is a constant,determined by null simulation.
alpha
the probabilistic threshold. User can set alpha=0.05 or 0.01 or the other values. Defalt value is 0.05
file
a csv file. User needs to give file name and specify direction path. But if user uses setwd function, drive is not necessarily specified in file.

Value

  • return a dat list: the data ordered by abs(t) contain information cloumns, data columns, t-values, rho and symb that are used to make heatmap and MAplot.

Details

t-statistic is defined as t-statistic multiplied by (rho/omega), that is, $$T=t*rho/omega$$ where $$t=\frac{(PA-PB)}{sqrt(VA+VB)}$$ $$rho=sqrt(psi*zeta)$$ where $$psi =max(\frac{min(XA)}{max(XB)},\frac{min(XB)}{max(XA)})$$ $$zeta=log(1+\frac{(mean(XA,XB)*var(XA,XB))}{(mean(XA)*var(XA)+mean(XB)*var(XB))})$$ omega is a constant as threshold.

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. Plos One, 10.1371/journal.pone.0123658.

See Also

smbetattest.

Examples

Run this code
data(jkttcell) 

dat<-mbetattest(X=jkttcell[1:1000,],na=3,nb=3,W=1,alpha=0.05,file="jurkat_NS_48h_tag_mbetattest.csv")

Run the code above in your browser using DataLab