
Last chance! 50% off unlimited learning
Sale ends in
WASPAS
function implements the Weighted Aggregated Sum Product ASsessment (WASPAS) Method.
WASPAS(decision, weights, cb, lambda)
cb(i)='max'
if the i-th criterion is benefit or cb(i)='min'
if the i-th criterion is a cost.WASPAS
returns a data frame which contains the score of the W index and the ranking of the alternatives.
d <- matrix(rpois(12, 5), nrow = 4)
w <- c(0.2, 0.2, 0.6)
cb <- c('max','min','max')
lambda <- 0.5
WASPAS(d,w,cb,lambda)
Run the code above in your browser using DataLab