MCMCdynamicEI(r0, r1, c0, c1, burnin=5000, mcmc=200000, thin=200,
tune=2.65316, verbose=FALSE, seed=0, W=0, nu0=1,
delta0=0.5, nu1=1, delta1=0.5, ...)
mcmc
object that contains the posterior density sample.
This object can be summarized by functions provided by the coda package. The following prior distributions are
assumed:
Inference centers on $p_0$, $p_1$, $\sigma^2_0$, and $\sigma^2_1$. The Metropolis-Hastings algorithm is used to sample from the posterior density.
Kevin M. Quinn. 2002. ``Ecological Inference in the Presence of Temporal Dependence." Paper prepared for Ecological Inference Conference, Harvard University, June 17-18, 2002.
Andrew D. Martin, Kevin M. Quinn, and Daniel Pemstein. 2002. Scythe Statistical
Library 0.3.
MCMCbaselineEI
, MCMChierEI
,
plot.mcmc
,summary.mcmc
r0 <- rpois(20, 300)
r1 <- rpois(20, 200)
c0 <- 100 + 1:20*7 + rpois(20, 30)
c1 <- (r0+r1) - c0
posterior <- MCMCdynamicEI(r0, r1, c0, c1)
Run the code above in your browser using DataLab