MCMChierEI(r0, r1, c0, c1, burnin=1000, mcmc=50000, thin=1,
m0=0, M0=10, m1=0, M1=10, nu0=1, delta0=0.5, nu1=1,
delta1=0.5, verbose=FALSE, tune=2.65316, seed=0, ...)
mcmc
object that contains the posterior density sample.
This object can be summarized by functions provided by the coda package.The following prior distributions are assumed: $\theta_{0t} \sim \mathcal{N}(\mu_0, \sigma^2_0)$, $\theta_{1t} \sim \mathcal{N}(\mu_1, \sigma^2_1)$. $\theta_{0t}$ is assumed to be a priori independent of $\theta_{1t}$ for all t. In addition, we assume the following hyperpriors: $\mu_0 \sim \mathcal{N}(m_0, M_0)$, $\mu_1 \sim \mathcal{N}(m_1, M_1)$, $\sigma^2_0 \sim \mathcal{IG}(\nu_0/2, \delta_0/2)$, and $\sigma^2_1 \sim \mathcal{IG}(\nu_1/2, \delta_1/2)$.
Inference centers on $p_0$, $p_1$, $\mu_0$, $\mu_1$, $\sigma^2_0$, and $\sigma^2_1$. The Metropolis-Hastings algorithm is used to sample from the posterior density.
Andrew D. Martin, Kevin M. Quinn, and Daniel Pemstein. 2002. Scythe Statistical
Library 0.3.
MCMCbaselineEI
, MCMCdynamicEI
,
plot.mcmc
,summary.mcmc
c0 <- rpois(5, 500)
c1 <- c(200, 140, 250, 190, 75)
r0 <- rpois(5, 400)
r1 <- (c0 + c1) - r0
posterior <- MCMChierEI(r0,r1,c0,c1, mcmc=200000, thin=50)
Run the code above in your browser using DataLab