MCMCbaselineEI(r0, r1, c0, c1, burnin=1000, mcmc=50000, thin=10,
tune=2.65316, verbose=FALSE, seed=0, alpha0=1, beta0=1,
alpha1=1, beta1=1, method="NA", ...)
where $r_0$, $r_1$, $c_0$, $c_1$, and $N$ are non-negative integers that are observed. The interior cell entries are not observed. It is assumed that $Y_0|r_0 \sim \mathcal{B}inomial(r_0, p_0)$ and $Y_1|r_1 \sim \mathcal{B}inomial(r_1, p_1)$. Inference centers on $p_0$ and $p_1$. Wakefield's baseline model starts with the assumption that a priori $p_0 \sim \mathcal{B}eta(\alpha_0, \beta_0)$ and $p_1 \sim \mathcal{B}eta(\alpha_1, \beta_1)$.
Andrew D. Martin, Kevin M. Quinn, and Daniel Pemstein. 2003.
Scythe Statistical
Library 0.4.
MCMChierEI
, MCMCdynamicEI
,
plot.mcmc
,summary.mcmc
posterior <- MCMCbaselineEI(300, 200, 100, 400)
plot(posterior)
summary(posterior)
Run the code above in your browser using DataLab