MCMCprobit(formula, data = list(), burnin = 1000, mcmc = 10000,
thin = 5, verbose = FALSE, seed = 0, beta.start = NA,
b0 = 0, B0 = 0, bayes.resid = FALSE, ...)
MCMCprobit
simulates from the posterior density of a probit
regression model using data augmentation. The simulation
proper is done in compiled C++ code to maximize efficiency. Please consult
the coda documentation for a comprehensive list of functions that can be
used to analyze the posterior density sample.The model takes the following form: $$y_i \sim \mathcal{B}ernoulli(\pi_i)$$ Where the inverse link function: $$\pi_i = \Phi(x_i'\beta)$$ We assume a multivariate Normal prior on $\beta$: $$\beta \sim \mathcal{N}(b_0,B_0^{-1})$$ See Albert and Chib (1993) for estimation details.
Albert, J. H. and S. Chib. 1995. ``Bayesian Residual Analysis for
Binary Response Regression Models.'' Biometrika. 82, 747-759.
Andrew D. Martin, Kevin M. Quinn, and Daniel Pemstein. 2003.
Scythe Statistical Library 0.4.
plot.mcmc
,summary.mcmc
, glm
data(birthwt)
posterior <- MCMCprobit(low~age+as.factor(race)+smoke, data=birthwt)
plot(posterior)
summary(posterior)
Run the code above in your browser using DataLab