Consider the following partially observed 2 by 2 contingency table:
llll{
| $Y=0$ | $Y=1$ |
- - - - - - - - - - - - - - - - - - - -
$X=0$ | $Y_0$ | | $r_0$
- - - - - - - - - - - - - - - - - - - -
$X=1$ | $Y_1$ | | $r_1$
- - - - - - - - - - - - - - - - - - - -
| $c_0$ | $c_1$ | $N$
} where $r_0$, $r_1$, $c_0$, $c_1$, and
$N$ are non-negative integers that are
observed. The interior cell entries are not observed. It is
assumed that $Y_0|r_0 \sim \mathcal{B}inomial(r_0,
p_0)$ and
$Y_1|r_1 \sim \mathcal{B}inomial(r_1, p_1)$.
This function plots the bounds on the maximum likelihood
estimatess for (p0, p1).